The birational Lalanne–Kreweras involution
Algebraic Combinatorics, Tome 5 (2022) no. 2, pp. 227-265.

Voir la notice de l'article provenant de la source Numdam

The Lalanne–Kreweras involution is an involution on the set of Dyck paths which combinatorially exhibits the symmetry of the number of valleys and major index statistics. We define piecewise-linear and birational extensions of the Lalanne–Kreweras involution. Actually, we show that the Lalanne–Kreweras involution is a special case of a more general operator, called rowvacuation, which acts on the antichains of any graded poset. Rowvacuation, like the closely related and more studied rowmotion operator, is a composition of toggles. We obtain the piecewise-linear and birational lifts of the Lalanne–Kreweras involution by using the piecewise-linear and birational toggles of Einstein and Propp. We show that the symmetry properties of the Lalanne–Kreweras involution extend to these piecewise-linear and birational lifts.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.201
Classification : 05E18, 06A07, 05A19
Keywords: Lalanne–Kreweras involution, rowvacuation, rowmotion, toggles, piecewise-linear and birational lifts, homomesy

Hopkins, Sam 1 ; Joseph, Michael 2

1 Department of Mathematics Howard University Washington DC USA
2 Department of Technology and Mathematics Dalton State College Dalton GA USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2022__5_2_227_0,
     author = {Hopkins, Sam and Joseph, Michael},
     title = {The birational {Lalanne{\textendash}Kreweras} involution},
     journal = {Algebraic Combinatorics},
     pages = {227--265},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {2},
     year = {2022},
     doi = {10.5802/alco.201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.201/}
}
TY  - JOUR
AU  - Hopkins, Sam
AU  - Joseph, Michael
TI  - The birational Lalanne–Kreweras involution
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 227
EP  - 265
VL  - 5
IS  - 2
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.201/
DO  - 10.5802/alco.201
LA  - en
ID  - ALCO_2022__5_2_227_0
ER  - 
%0 Journal Article
%A Hopkins, Sam
%A Joseph, Michael
%T The birational Lalanne–Kreweras involution
%J Algebraic Combinatorics
%D 2022
%P 227-265
%V 5
%N 2
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.201/
%R 10.5802/alco.201
%G en
%F ALCO_2022__5_2_227_0
Hopkins, Sam; Joseph, Michael. The birational Lalanne–Kreweras involution. Algebraic Combinatorics, Tome 5 (2022) no. 2, pp. 227-265. doi : 10.5802/alco.201. http://geodesic.mathdoc.fr/articles/10.5802/alco.201/

[1] Adenbaum, Ben; Elizalde, Sergi Rowmotion on 321-avoiding permutations, in preparation, 2021

[2] Armstrong, Drew; Stump, Christian; Thomas, Hugh A uniform bijection between nonnesting and noncrossing partitions, Trans. Amer. Math. Soc., Volume 365 (2013) no. 8, pp. 4121-4151 | Zbl | MR | DOI

[3] Bessis, David; Reiner, Victor Cyclic sieving of noncrossing partitions for complex reflection groups, Ann. Comb., Volume 15 (2011) no. 2, pp. 197-222 | Zbl | MR | DOI

[4] Billey, Sara C.; Jockusch, William; Stanley, Richard P. Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | Zbl | MR | DOI

[5] Brouwer, Andries; Schrijver, Alexander On the period of an operator, defined on antichains, ZW 24/74, Stichting Mathematisch Centrum, 1974, pp. 1-13

[6] Callan, David Bijections from Dyck paths to 321-avoiding permutations revisited (2007) (https://arxiv.org/abs/0711.2684)

[7] Cameron, Peter J.; Fon-Der-Flaass, Dmitri G. Orbits of antichains revisited, European J. Combin., Volume 16 (1995) no. 6, pp. 545-554 | Zbl | MR | DOI

[8] Chan, Melody; Haddadan, Shahrzad; Hopkins, Sam; Moci, Luca The expected jaggedness of order ideals, Forum Math. Sigma, Volume 5 (2017), e9, 27 pages | Zbl | MR | DOI

[9] Defant, Colin; Hopkins, Sam Symmetry of Narayana numbers and rowvacuation of root posets, Forum Math. Sigma, Volume 9 (2021), e53, 24 pages | Zbl | MR | DOI

[10] Defant, Colin; Hopkins, Sam; Poznanović, Svetlana; Propp, James Homomesy via toggleability statistics (2021) (https://arxiv.org/abs/2108.13227)

[11] Einstein, David; Farber, Miriam; Gunawan, Emily; Joseph, Michael; Macauley, Matthew; Propp, James; Rubinstein-Salzedo, Simon Noncrossing partitions, toggles, and homomesies, Electron. J. Combin., Volume 23 (2016) no. 3, 3.52, 26 pages | Zbl | MR | DOI

[12] Einstein, David; Propp, James Combinatorial, piecewise-linear, and birational homomesy for products of two chains, Algebr. Comb., Volume 4 (2021) no. 2, pp. 201-224 | Zbl | MR | DOI

[13] Elizalde, Sergi Fixed points and excedances in restricted permutations, Electron. J. Combin., Volume 18 (2011) no. 2, 29, 17 pages | Zbl | MR

[14] Grinberg, Darij; Roby, Tom Iterative properties of birational rowmotion II: rectangles and triangles, Electron. J. Combin., Volume 22 (2015) no. 3, 3.40, 49 pages | Zbl | MR

[15] Grinberg, Darij; Roby, Tom Iterative properties of birational rowmotion I: generalities and skeletal posets, Electron. J. Combin., Volume 23 (2016) no. 1, 1.33, 40 pages | Zbl | MR

[16] Haddadan, Shahrzad Some instances of homomesy among ideals of posets, Electron. J. Combin., Volume 28 (2021) no. 1, 1.60, 23 pages | Zbl | MR | DOI

[17] Hopkins, Sam Cyclic sieving for plane partitions and symmetry, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), 130, 40 pages | Zbl | MR | DOI

[18] Hopkins, Sam Minuscule doppelgängers, the coincidental down-degree expectations property, and rowmotion, Experimental Mathematics (2020), pp. 1-29 | DOI

[19] Hopkins, Sam Order polynomial product formulas and poset dynamics (2020) (https://arxiv.org/abs/2006.01568, for the AMS volume on Open Problems in Algebraic Combinatorics to accompany the 2022 OPAC conference at U. Minnesota)

[20] Joseph, Michael Antichain toggling and rowmotion, Electron. J. Combin., Volume 26 (2019) no. 1, 1.29, 43 pages | Zbl | MR

[21] Joseph, Michael; Roby, Tom Birational and noncommutative lifts of antichain toggling and rowmotion, Algebr. Comb., Volume 3 (2020) no. 4, pp. 955-984 | Zbl | MR | DOI

[22] Joseph, Michael; Roby, Tom A birational lifting of the Stanley–Thomas word on products of two chains, Discrete Math. Theor. Comput. Sci., Volume 23 (2021) no. 1, 17, 20 pages | MR

[23] Kreweras, Germain Sur les éventails de segments, Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche, Volume 15 (1970), pp. 3-41 | mathdoc-id

[24] Lalanne, J.-C. Une involution sur les chemins de Dyck, European J. Combin., Volume 13 (1992) no. 6, pp. 477-487 | Zbl | MR | DOI

[25] Musiker, Gregg; Roby, Tom Paths to understanding birational rowmotion on products of two chains, Algebr. Comb., Volume 2 (2019) no. 2, pp. 275-304 | mathdoc-id | Zbl | MR | DOI

[26] Okada, Soichi Birational rowmotion and Coxeter-motion on minuscule posets, Electron. J. Combin., Volume 28 (2021) no. 1, 1.17, 30 pages | Zbl | MR | DOI

[27] Panyushev, Dmitri I. ad-nilpotent ideals of a Borel subalgebra: generators and duality, J. Algebra, Volume 274 (2004) no. 2, pp. 822-846 | Zbl | MR | DOI

[28] Panyushev, Dmitri I. On orbits of antichains of positive roots, European J. Combin., Volume 30 (2009) no. 2, pp. 586-594 | Zbl | MR | DOI

[29] Pon, Steven; Wang, Qiang Promotion and evacuation on standard Young tableaux of rectangle and staircase shape, Electron. J. Combin., Volume 18 (2011) no. 1, 18, 18 pages | Zbl | MR

[30] Proctor, Robert A. Shifted plane partitions of trapezoidal shape, Proc. Amer. Math. Soc., Volume 89 (1983) no. 3, pp. 553-559 | Zbl | MR | DOI

[31] Proctor, Robert A. Odd symplectic groups, Invent. Math., Volume 92 (1988) no. 2, pp. 307-332 | Zbl | MR | DOI

[32] Proctor, Robert A. New symmetric plane partition identities from invariant theory work of De Concini and Procesi, European J. Combin., Volume 11 (1990) no. 3, pp. 289-300 | Zbl | MR | DOI

[33] Propp, James A spectral theory for combinatorial dynamics (2021) (https://arxiv.org/abs/2105.11568)

[34] Propp, James; Roby, Tom Homomesy in products of two chains, Electron. J. Combin., Volume 22 (2015) no. 3, 3.4, 29 pages | Zbl | MR

[35] Roby, Tom Dynamical algebraic combinatorics and the homomesy phenomenon, Recent trends in combinatorics (IMA Vol. Math. Appl.), Volume 159, Springer, [Cham], 2016, pp. 619-652 | Zbl | MR | DOI

[36] Rush, David B.; Shi, XiaoLin On orbits of order ideals of minuscule posets, J. Algebraic Combin., Volume 37 (2013) no. 3, pp. 545-569 | Zbl | MR | DOI

[37] Rush, David B.; Wang, Kelvin On Orbits of Order Ideals of Minuscule Posets II: Homomesy (2015) (https://arxiv.org/abs/1509.08047)

[38] Schützenberger, Marcel P. Promotion des morphismes d’ensembles ordonnés, Discrete Math., Volume 2 (1972), pp. 73-94 | Zbl | MR | DOI

[39] Stanley, Richard P. Two poset polytopes, Discrete Comput. Geom., Volume 1 (1986) no. 1, pp. 9-23 | Zbl | MR | DOI

[40] Stanley, Richard P. Promotion and evacuation, Electron. J. Combin., Volume 16 (2009) no. 2, 9, 24 pages | Zbl | MR

[41] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | Zbl | MR

[42] Stein, William A. et al. Sage Mathematics Software (Version 9.0) (2020) (http://www.sagemath.org)

[43] Striker, Jessica Rowmotion and generalized toggle groups, Discrete Math. Theor. Comput. Sci., Volume 20 (2018) no. 1, 17, 26 pages | Zbl | MR

[44] Striker, Jessica; Williams, Nathan Promotion and rowmotion, European J. Combin., Volume 33 (2012) no. 8, pp. 1919-1942 | Zbl | MR | DOI

[45] Thomas, Hugh; Williams, Nathan Rowmotion in slow motion, Proc. Lond. Math. Soc. (3), Volume 119 (2019) no. 5, pp. 1149-1178 | Zbl | MR | DOI

Cité par Sources :