Voir la notice de l'article provenant de la source Numdam
We prove that an inclusion-exclusion inspired expression of Schubert polynomials of permutations that avoid the patterns and is nonnegative. Our theorem implies a partial affirmative answer to a recent conjecture of Yibo Gao about principal specializations of Schubert polynomials. We propose a general framework for finding inclusion-exclusion inspired expression of Schubert polynomials of all permutations.
Mészáros, Karola 1 ; Tanjaya, Arthur 2
@article{ALCO_2022__5_2_209_0, author = {M\'esz\'aros, Karola and Tanjaya, Arthur}, title = {Inclusion-exclusion on {Schubert} polynomials}, journal = {Algebraic Combinatorics}, pages = {209--226}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.200}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.200/} }
TY - JOUR AU - Mészáros, Karola AU - Tanjaya, Arthur TI - Inclusion-exclusion on Schubert polynomials JO - Algebraic Combinatorics PY - 2022 SP - 209 EP - 226 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.200/ DO - 10.5802/alco.200 LA - en ID - ALCO_2022__5_2_209_0 ER -
Mészáros, Karola; Tanjaya, Arthur. Inclusion-exclusion on Schubert polynomials. Algebraic Combinatorics, Tome 5 (2022) no. 2, pp. 209-226. doi : 10.5802/alco.200. http://geodesic.mathdoc.fr/articles/10.5802/alco.200/
[1] RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | Zbl | MR | DOI
[2] A bijective proof of Macdonald’s reduced word formula, Algebr. Comb., Volume 2 (2019) no. 2, pp. 217-248 | mathdoc-id | Zbl | MR | DOI
[3] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | Zbl | MR | DOI
[4] Upper Bounds of Schubert Polynomials, Sci. China Math. (2021) | DOI
[5] Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., Volume 332 (2018), pp. 465-475 | Zbl | MR | DOI
[6] Zero-one Schubert polynomials, Math. Z., Volume 297 (2021) no. 3-4, pp. 1023-1042 | Zbl | MR | DOI
[7] The Yang–Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993) | MR | Zbl | DOI
[8] Reduced words and plane partitions, J. Algebraic Combin., Volume 6 (1997) no. 4, pp. 311-319 | Zbl | MR | DOI
[9] Schubert polynomials and the nilCoxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | Zbl | MR | DOI
[10] Principal specializations of Schubert polynomials and pattern containment, European J. Combin., Volume 94 (2021), 103291, 12 pages | Zbl | MR | DOI
[11] Logarithmic concavity of Schur and related polynomials, Trans. Am. Math. Soc. (2022) (https://doi.org/10.1090/tran/8606)
[12] Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | Zbl | MR | DOI
[13] Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 304 (1987) no. 9, pp. 209-211 | Zbl | MR
[14] Back stable Schubert calculus, Compos. Math., Volume 157 (2021) no. 5, pp. 883-962 | Zbl | MR | DOI
[15] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | Zbl | MR | DOI
[16] A unified approach to combinatorial formulas for Schubert polynomials, J. Algebraic Combin., Volume 20 (2004) no. 3, pp. 263-299 | Zbl | MR | DOI
[17] Notes on Schubert polynomials, Publ. LaCIM, UQAM, Montréal, 1991
[18] Schubert polynomials and Bott–Samelson varieties, Comment. Math. Helv., Volume 73 (1998) no. 4, pp. 603-636 | Zbl | MR | DOI
[19] Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001, viii+167 pages (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | Zbl | MR
[20] Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.), Volume 25 (2019) no. 5, 66, 37 pages | Zbl | MR | DOI
[21] Asymptotics of principal evaluations of Schubert polynomials for layered permutations, Proc. Amer. Math. Soc., Volume 147 (2019) no. 4, pp. 1377-1389 | Zbl | MR | DOI
[22] Key polynomials and a flagged Littlewood–Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | Zbl | MR | DOI
[23] Some Schubert shenanigans (2017) (https://arxiv.org/abs/1704.00851)
[24] The prism tableau model for Schubert polynomials, J. Combin. Theory Ser. A, Volume 154 (2018), pp. 551-582 | Zbl | MR | DOI
[25] Schubert polynomials, 132-patterns, and Stanley’s conjecture, Algebr. Comb., Volume 1 (2018) no. 4, pp. 415-423 | mathdoc-id | Zbl | MR | DOI
Cité par Sources :