Voir la notice de l'article provenant de la source Numdam
The Schur polynomials are essential in understanding the representation theory of the general linear group. They also describe the cohomology ring of the Grassmannians. For a staircase shape and a subpartition, the Stembridge equality states that . This equality provides information about the symmetry of the cohomology ring. The stable Grothendieck polynomials , and the dual stable Grothendieck polynomials , developed by Buch, Lam, and Pylyavskyy, are variants of the Schur polynomials and describe the -theory of the Grassmannians. Using the Hopf algebra structure of the ring of symmetric functions and a generalized Littlewood–Richardson rule, we prove that and , the analogues of the Stembridge equality for the skew stable and skew dual stable Grothendieck polynomials.
Abney-McPeek, Fiona 1 ; An, Serena 2 ; Ng, Jakin S. 2
@article{ALCO_2022__5_2_187_0, author = {Abney-McPeek, Fiona and An, Serena and Ng, Jakin S.}, title = {The {Stembridge} equality for skew stable {Grothendieck} polynomials and skew dual stable {Grothendieck} polynomials}, journal = {Algebraic Combinatorics}, pages = {187--208}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.199}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.199/} }
TY - JOUR AU - Abney-McPeek, Fiona AU - An, Serena AU - Ng, Jakin S. TI - The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials JO - Algebraic Combinatorics PY - 2022 SP - 187 EP - 208 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.199/ DO - 10.5802/alco.199 LA - en ID - ALCO_2022__5_2_187_0 ER -
%0 Journal Article %A Abney-McPeek, Fiona %A An, Serena %A Ng, Jakin S. %T The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials %J Algebraic Combinatorics %D 2022 %P 187-208 %V 5 %N 2 %I The Combinatorics Consortium %U http://geodesic.mathdoc.fr/articles/10.5802/alco.199/ %R 10.5802/alco.199 %G en %F ALCO_2022__5_2_187_0
Abney-McPeek, Fiona; An, Serena; Ng, Jakin S. The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials. Algebraic Combinatorics, Tome 5 (2022) no. 2, pp. 187-208. doi : 10.5802/alco.199. http://geodesic.mathdoc.fr/articles/10.5802/alco.199/
[1] Coincidences among skew stable and dual stable Grothendieck polynomials, Involve, Volume 11 (2018) no. 1, pp. 143-167 | Zbl | MR | DOI
[2] A Littlewood–Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | Zbl | MR | DOI
[3] Grothendieck polynomials and the Yang–Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, sd, pp. 183-189 | MR
[4] A Littlewood–Richardson rule for dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, Volume 151 (2017), pp. 23-35 | Zbl | MR | DOI
[5] Hopf Algebras in Combinatorics (2020) (https://arxiv.org/abs/1409.8356)
[6] Combinatorial Hopf algebras and K-homology of Grassmanians, Int. Math. Res. Not. (2007) no. 24, rnm125, 48 pages | DOI
[7] Coincidences among skew Schur functions, Adv. Math., Volume 216 (2007) no. 1, pp. 118-152 | Zbl | MR | DOI
[8] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiv+626 pages (second edition) | Zbl | MR
[9] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | Zbl | MR | DOI
Cité par Sources :