Voir la notice de l'article provenant de la source Numdam
Residually thin and nilpotent table algebras, which are abstractions of fusion rings and adjacency algebras of association schemes, are defined and investigated. A formula for the degrees of basis elements in residually thin table algebras is established, which yields an integrality result of Gelaki and Nikshych as an immediate corollary; and it is shown that this formula holds only for such algebras. These theorems for table algebras specialize to new results for association schemes. Bi-anchored thin-central (BTC) chains of closed subsets are used to define nilpotence, in the manner of Hanaki for association schemes. Lower BTC-chains are defined as an abstraction of the lower central series of a finite group. A partial characterization is proved; and a family of examples illustrates that unlike the case for finite groups, there is not necessarily a unique lower BTC-chain for a nilpotent table algebra or association scheme.
Blau, Harvey I. 1
@article{ALCO_2022__5_1_21_0, author = {Blau, Harvey I.}, title = {On residually thin and nilpotent table algebras, fusion rings, and association schemes}, journal = {Algebraic Combinatorics}, pages = {21--36}, publisher = {MathOA foundation}, volume = {5}, number = {1}, year = {2022}, doi = {10.5802/alco.194}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.194/} }
TY - JOUR AU - Blau, Harvey I. TI - On residually thin and nilpotent table algebras, fusion rings, and association schemes JO - Algebraic Combinatorics PY - 2022 SP - 21 EP - 36 VL - 5 IS - 1 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.194/ DO - 10.5802/alco.194 LA - en ID - ALCO_2022__5_1_21_0 ER -
%0 Journal Article %A Blau, Harvey I. %T On residually thin and nilpotent table algebras, fusion rings, and association schemes %J Algebraic Combinatorics %D 2022 %P 21-36 %V 5 %N 1 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.194/ %R 10.5802/alco.194 %G en %F ALCO_2022__5_1_21_0
Blau, Harvey I. On residually thin and nilpotent table algebras, fusion rings, and association schemes. Algebraic Combinatorics, Tome 5 (2022) no. 1, pp. 21-36. doi : 10.5802/alco.194. http://geodesic.mathdoc.fr/articles/10.5802/alco.194/
[1] Generalized table algebras, Israel J. Math., Volume 114 (1999), pp. 29-60 | Zbl | MR | DOI
[2] Quotient structures in -algebras, J. Algebra, Volume 177 (1995) no. 1, pp. 297-337 | Zbl | MR | DOI
[3] Table algebras, European J. Combin., Volume 30 (2009) no. 6, pp. 1426-1455 | Zbl | MR | DOI
[4] Fusion rings with few degrees, J. Algebra, Volume 396 (2013), pp. 220-271 | Zbl | MR | DOI
[5] Normal series and character values in -standard table algebras, Comm. Algebra, Volume 45 (2017) no. 11, pp. 4646-4655 | Zbl | MR | DOI
[6] Sylow theory for table algebras, fusion rule algebras, and hypergroups, J. Algebra, Volume 273 (2004) no. 2, pp. 551-570 | Zbl | MR | DOI
[7] On residually thin hypergroups, J. Algebra, Volume 551 (2020), pp. 93-118 | Zbl | MR | DOI
[8] Nilpotent fusion categories, Adv. Math., Volume 217 (2008) no. 3, pp. 1053-1071 | Zbl | MR | DOI
[9] Nilpotent schemes and group-like schemes, J. Combin. Theory Ser. A, Volume 115 (2008) no. 2, pp. 226-236 | Zbl | MR | DOI
[10] Classification of association schemes with small vertices (2021) (Accessed 2016-08-19 http://math.shinshu-u.ac.jp/~hanaki/as/)
[11] Indecomposable decompositions of modular standard modules for two families of association schemes, J. Algebraic Combin., Volume 46 (2017) no. 2, pp. 445-453 | Zbl | MR | DOI
[12] A wedge product of association schemes, European J. Combin., Volume 30 (2009) no. 3, pp. 705-715 | Zbl | MR | DOI
[13] An algebraic approach to association schemes, Lecture Notes in Mathematics, 1628, Springer-Verlag, Berlin, 1996, xii+189 pages | Zbl | MR | DOI
[14] Theory of association schemes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, xvi+283 pages | MR
Cité par Sources :