On residually thin and nilpotent table algebras, fusion rings, and association schemes
Algebraic Combinatorics, Tome 5 (2022) no. 1, pp. 21-36.

Voir la notice de l'article provenant de la source Numdam

Residually thin and nilpotent table algebras, which are abstractions of fusion rings and adjacency algebras of association schemes, are defined and investigated. A formula for the degrees of basis elements in residually thin table algebras is established, which yields an integrality result of Gelaki and Nikshych as an immediate corollary; and it is shown that this formula holds only for such algebras. These theorems for table algebras specialize to new results for association schemes. Bi-anchored thin-central (BTC) chains of closed subsets are used to define nilpotence, in the manner of Hanaki for association schemes. Lower BTC-chains are defined as an abstraction of the lower central series of a finite group. A partial characterization is proved; and a family of examples illustrates that unlike the case for finite groups, there is not necessarily a unique lower BTC-chain for a nilpotent table algebra or association scheme.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.194
Classification : 16P10, 16P70, 16W10, 20D15, 05E30
Keywords: Table algebra, fusion ring, association scheme, residually thin, nilpotent, thin central chain.

Blau, Harvey I. 1

1 Department of Mathematical Sciences Northern Illinois University DeKalb, IL 60115, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2022__5_1_21_0,
     author = {Blau, Harvey I.},
     title = {On residually thin and nilpotent table algebras, fusion rings, and association schemes},
     journal = {Algebraic Combinatorics},
     pages = {21--36},
     publisher = {MathOA foundation},
     volume = {5},
     number = {1},
     year = {2022},
     doi = {10.5802/alco.194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.194/}
}
TY  - JOUR
AU  - Blau, Harvey I.
TI  - On residually thin and nilpotent table algebras, fusion rings, and association schemes
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 21
EP  - 36
VL  - 5
IS  - 1
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.194/
DO  - 10.5802/alco.194
LA  - en
ID  - ALCO_2022__5_1_21_0
ER  - 
%0 Journal Article
%A Blau, Harvey I.
%T On residually thin and nilpotent table algebras, fusion rings, and association schemes
%J Algebraic Combinatorics
%D 2022
%P 21-36
%V 5
%N 1
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.194/
%R 10.5802/alco.194
%G en
%F ALCO_2022__5_1_21_0
Blau, Harvey I. On residually thin and nilpotent table algebras, fusion rings, and association schemes. Algebraic Combinatorics, Tome 5 (2022) no. 1, pp. 21-36. doi : 10.5802/alco.194. http://geodesic.mathdoc.fr/articles/10.5802/alco.194/

[1] Arad, Zvi; Fisman, Elsa; Muzychuk, Mikhail Generalized table algebras, Israel J. Math., Volume 114 (1999), pp. 29-60 | Zbl | MR | DOI

[2] Blau, Harvey I. Quotient structures in C-algebras, J. Algebra, Volume 177 (1995) no. 1, pp. 297-337 | Zbl | MR | DOI

[3] Blau, Harvey I. Table algebras, European J. Combin., Volume 30 (2009) no. 6, pp. 1426-1455 | Zbl | MR | DOI

[4] Blau, Harvey I. Fusion rings with few degrees, J. Algebra, Volume 396 (2013), pp. 220-271 | Zbl | MR | DOI

[5] Blau, Harvey I.; Chen, Shengan Normal series and character values in p-standard table algebras, Comm. Algebra, Volume 45 (2017) no. 11, pp. 4646-4655 | Zbl | MR | DOI

[6] Blau, Harvey I.; Zieschang, Paul-Hermann Sylow theory for table algebras, fusion rule algebras, and hypergroups, J. Algebra, Volume 273 (2004) no. 2, pp. 551-570 | Zbl | MR | DOI

[7] French, Christopher; Zieschang, Paul-Hermann On residually thin hypergroups, J. Algebra, Volume 551 (2020), pp. 93-118 | Zbl | MR | DOI

[8] Gelaki, Shlomo; Nikshych, Dmitri Nilpotent fusion categories, Adv. Math., Volume 217 (2008) no. 3, pp. 1053-1071 | Zbl | MR | DOI

[9] Hanaki, Akihide Nilpotent schemes and group-like schemes, J. Combin. Theory Ser. A, Volume 115 (2008) no. 2, pp. 226-236 | Zbl | MR | DOI

[10] Hanaki, Akihide; Miyamoto, Izumi Classification of association schemes with small vertices (2021) (Accessed 2016-08-19 http://math.shinshu-u.ac.jp/~hanaki/as/)

[11] Hanaki, Akihide; Shimabukuro, Osamu Indecomposable decompositions of modular standard modules for two families of association schemes, J. Algebraic Combin., Volume 46 (2017) no. 2, pp. 445-453 | Zbl | MR | DOI

[12] Muzychuk, Mikhail A wedge product of association schemes, European J. Combin., Volume 30 (2009) no. 3, pp. 705-715 | Zbl | MR | DOI

[13] Zieschang, Paul-Hermann An algebraic approach to association schemes, Lecture Notes in Mathematics, 1628, Springer-Verlag, Berlin, 1996, xii+189 pages | Zbl | MR | DOI

[14] Zieschang, Paul-Hermann Theory of association schemes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, xvi+283 pages | MR

Cité par Sources :