Let denote an undirected, connected, regular graph with vertex set , adjacency matrix , and distinct eigenvalues. Let denote the subalgebra of generated by . We refer to as the adjacency algebra of . In this paper we investigate algebraic and combinatorial structure of for which the adjacency algebra is closed under Hadamard multiplication. In particular, under this simple assumption, we show the following: (i) has a standard basis ; (ii) for every vertex there exists identical distance-faithful intersection diagram of with cells; (iii) the graph is quotient-polynomial; and (iv) if we pick then has distinct eigenvalues if and only if . We describe the combinatorial structure of quotient-polynomial graphs with diameter and distinct eigenvalues. As a consequence of the techniques used in the paper, some simple algorithms allow us to decide whether is distance-regular or not and, more generally, which distance- matrices are polynomial in , giving also these polynomials.
Révisé le :
Accepté le :
Publié le :
Keywords: Symmetric association scheme, adjacency algebra, quotient-polynomial graph, intersection diagram.
Fiol, Miquel A. 1 ; Penjić, Safet 2
CC-BY 4.0
@article{ALCO_2021__4_6_947_0,
author = {Fiol, Miquel A. and Penji\'c, Safet},
title = {On symmetric association schemes and associated quotient-polynomial graphs},
journal = {Algebraic Combinatorics},
pages = {947--969},
year = {2021},
publisher = {MathOA foundation},
volume = {4},
number = {6},
doi = {10.5802/alco.187},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.187/}
}
TY - JOUR AU - Fiol, Miquel A. AU - Penjić, Safet TI - On symmetric association schemes and associated quotient-polynomial graphs JO - Algebraic Combinatorics PY - 2021 SP - 947 EP - 969 VL - 4 IS - 6 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.187/ DO - 10.5802/alco.187 LA - en ID - ALCO_2021__4_6_947_0 ER -
%0 Journal Article %A Fiol, Miquel A. %A Penjić, Safet %T On symmetric association schemes and associated quotient-polynomial graphs %J Algebraic Combinatorics %D 2021 %P 947-969 %V 4 %N 6 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.187/ %R 10.5802/alco.187 %G en %F ALCO_2021__4_6_947_0
Fiol, Miquel A.; Penjić, Safet. On symmetric association schemes and associated quotient-polynomial graphs. Algebraic Combinatorics, Tome 4 (2021) no. 6, pp. 947-969. doi: 10.5802/alco.187
Cité par Sources :