On symmetric association schemes and associated quotient-polynomial graphs
Algebraic Combinatorics, Tome 4 (2021) no. 6, pp. 947-969 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

Let Γ denote an undirected, connected, regular graph with vertex set X, adjacency matrix A, and d+1 distinct eigenvalues. Let 𝒜=𝒜(Γ) denote the subalgebra of Mat X () generated by A. We refer to 𝒜 as the adjacency algebra of Γ. In this paper we investigate algebraic and combinatorial structure of Γ for which the adjacency algebra 𝒜 is closed under Hadamard multiplication. In particular, under this simple assumption, we show the following: (i) 𝒜 has a standard basis {I,F 1 ,...,F d }; (ii) for every vertex there exists identical distance-faithful intersection diagram of Γ with d+1 cells; (iii) the graph Γ is quotient-polynomial; and (iv) if we pick F{I,F 1 ,...,F d } then F has d+1 distinct eigenvalues if and only if span{I,F 1 ,...,F d }=span{I,F,...,F d }. We describe the combinatorial structure of quotient-polynomial graphs with diameter 2 and 4 distinct eigenvalues. As a consequence of the techniques used in the paper, some simple algorithms allow us to decide whether Γ is distance-regular or not and, more generally, which distance-i matrices are polynomial in A, giving also these polynomials.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.187
Classification : 05E30, 05C50
Keywords: Symmetric association scheme, adjacency algebra, quotient-polynomial graph, intersection diagram.

Fiol, Miquel A. 1 ; Penjić, Safet 2

1 Departament de Matemàtiques Universitat Politécnica de Catalunya Barcelona Graduate School of Mathematics Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech) Catalonia, Spain
2 University of Primorska Andrej Marušič Institute Muzejski trg 2 6000 Koper, Slovenia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2021__4_6_947_0,
     author = {Fiol, Miquel A. and Penji\'c, Safet},
     title = {On symmetric association schemes and associated quotient-polynomial graphs},
     journal = {Algebraic Combinatorics},
     pages = {947--969},
     year = {2021},
     publisher = {MathOA foundation},
     volume = {4},
     number = {6},
     doi = {10.5802/alco.187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.187/}
}
TY  - JOUR
AU  - Fiol, Miquel A.
AU  - Penjić, Safet
TI  - On symmetric association schemes and associated quotient-polynomial graphs
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 947
EP  - 969
VL  - 4
IS  - 6
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.187/
DO  - 10.5802/alco.187
LA  - en
ID  - ALCO_2021__4_6_947_0
ER  - 
%0 Journal Article
%A Fiol, Miquel A.
%A Penjić, Safet
%T On symmetric association schemes and associated quotient-polynomial graphs
%J Algebraic Combinatorics
%D 2021
%P 947-969
%V 4
%N 6
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.187/
%R 10.5802/alco.187
%G en
%F ALCO_2021__4_6_947_0
Fiol, Miquel A.; Penjić, Safet. On symmetric association schemes and associated quotient-polynomial graphs. Algebraic Combinatorics, Tome 4 (2021) no. 6, pp. 947-969. doi: 10.5802/alco.187

Cité par Sources :