Stretched Newell–Littlewood coefficients
Algebraic Combinatorics, Tome 5 (2022) no. 6, pp. 1227-1256 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

Newell–Littlewood coefficients n μ,ν λ are the multiplicities occurring in the decomposition of products of universal characters of the orthogonal and symplectic groups. They may also be expressed, or even defined directly in terms of Littlewood–Richardson coefficients, c μ,ν λ . Both sets of coefficients have stretched forms c tμ,tν tλ and n tμ,tν tλ , where tκ is the partition obtained by multiplying each part of the partition κ by the integer t. It is known that c tμ,tν tλ is a polynomial in t and here it is shown that n tμ,tν tλ is an Ehrhart quasi-polynomial in t with minimum quasi-period at most 2. The evaluation of n tμ,tν tλ is effected both by deriving its generating function and by establishing a hive model analogous to that used for the calculation of c tμ,tν tλ . These two approaches lead to a whole battery of conjectures about the nature of the quasi-polynomials n tμ,tν tλ . These include both positivity, stability and saturation conjectures that are supported by a significant amount of data from a range of examples.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.186
Classification : 05E10, 20C15
Keywords: Orthogonal and symplectic algebras, universal characters, multiplicities, generating functions, hive model, Ehrhart quasi-polynomials.

King, Ronald C. 1

1 Mathematical Sciences University of Southampton Southampton SO17 1BJ UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2022__5_6_1227_0,
     author = {King, Ronald C.},
     title = {Stretched {Newell{\textendash}Littlewood} coefficients},
     journal = {Algebraic Combinatorics},
     pages = {1227--1256},
     year = {2022},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {6},
     doi = {10.5802/alco.186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.186/}
}
TY  - JOUR
AU  - King, Ronald C.
TI  - Stretched Newell–Littlewood coefficients
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 1227
EP  - 1256
VL  - 5
IS  - 6
PB  - The Combinatorics Consortium
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.186/
DO  - 10.5802/alco.186
LA  - en
ID  - ALCO_2022__5_6_1227_0
ER  - 
%0 Journal Article
%A King, Ronald C.
%T Stretched Newell–Littlewood coefficients
%J Algebraic Combinatorics
%D 2022
%P 1227-1256
%V 5
%N 6
%I The Combinatorics Consortium
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.186/
%R 10.5802/alco.186
%G en
%F ALCO_2022__5_6_1227_0
King, Ronald C. Stretched Newell–Littlewood coefficients. Algebraic Combinatorics, Tome 5 (2022) no. 6, pp. 1227-1256. doi: 10.5802/alco.186

Cité par Sources :