Voir la notice de l'article provenant de la source Numdam
Subword complexes are simplicial complexes introduced by Knutson and Miller to illustrate the combinatorics of Schubert polynomials and determinantal ideals. They proved that any subword complex is homeomorphic to a ball or a sphere and asked about their geometric realizations. We show that a family of subword complexes can be realized geometrically via regular triangulations of root polytopes. This implies that a family of -Grothendieck polynomials are special cases of reduced forms in the subdivision algebra of root polytopes. We can also write the volume and Ehrhart series of root polytopes in terms of -Grothendieck polynomials.
Escobar, Laura 1 ; Mészáros, Karola 2
@article{ALCO_2018__1_3_395_0, author = {Escobar, Laura and M\'esz\'aros, Karola}, title = {Subword complexes via triangulations of root polytopes}, journal = {Algebraic Combinatorics}, pages = {395--414}, publisher = {MathOA foundation}, volume = {1}, number = {3}, year = {2018}, doi = {10.5802/alco.17}, zbl = {1393.52010}, mrnumber = {3856530}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.17/} }
TY - JOUR AU - Escobar, Laura AU - Mészáros, Karola TI - Subword complexes via triangulations of root polytopes JO - Algebraic Combinatorics PY - 2018 SP - 395 EP - 414 VL - 1 IS - 3 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.17/ DO - 10.5802/alco.17 LA - en ID - ALCO_2018__1_3_395_0 ER -
Escobar, Laura; Mészáros, Karola. Subword complexes via triangulations of root polytopes. Algebraic Combinatorics, Tome 1 (2018) no. 3, pp. 395-414. doi : 10.5802/alco.17. http://geodesic.mathdoc.fr/articles/10.5802/alco.17/
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | Zbl | MR
[2] Fan realizations of type subword complexes and multi-associahedra of rank 3, Discrete Comput. Geom., Volume 54 (2015) no. 1, pp. 195-231 | Zbl | MR | DOI
[3] On associahedra and related topics, Ph. D. Thesis, Freie Universität Berlin (Germany) (2012)
[4] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | Zbl | MR | DOI
[5] Brick manifolds and toric varieties of brick polytopes, Electron. J. Comb., Volume 23 (2016) no. 2, P2.25, 18 pages | Zbl | MR
[6] Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics, DIMACS, 1994, pp. 183-189 | MR
[7] Combinatorics of hypergeometric functions associated with positive roots, The Arnold-Gelfand mathematical seminars, Birkhäuser, 1997, pp. 205-221 | Zbl | MR | DOI
[8] -unique reductions for Mészáros’s subdivision algebra (2017) (https://arxiv.org/abs/1704.00839) | Zbl
[9] On some quadratic algebras, Dunkl elements, Schubert, Grothendieck, Tutte and reduced polynomials (2014) (RIMS preprint)
[10] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | Zbl | MR | DOI
[11] Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | Zbl | MR | DOI
[12] Root polytopes, triangulations, and the subdivision algebra. I, Trans. Am. Math. Soc., Volume 363 (2011) no. 8, pp. 4359-4382 | Zbl | MR | DOI
[13] Root polytopes, triangulations, and the subdivision algebra, II, Trans. Am. Math. Soc., Volume 363 (2011) no. 11, pp. 6111-6141 | Zbl | MR | DOI
[14] -polynomials via reduced forms, Electron. J. Comb., Volume 22 (2015) no. 4, P4.18, 17 pages | Zbl | MR
[15] Product formulas for volumes of flow polytopes, Proc. Am. Math. Soc., Volume 143 (2015) no. 3, pp. 937-954 | Zbl | MR | DOI
[16] -polynomials of reduction trees, SIAM J. Discrete Math., Volume 30 (2016) no. 2, pp. 736-762 | Zbl | MR | DOI
[17] Pipe dream complexes and triangulations of root polytopes belong together, SIAM J. Discrete Math., Volume 30 (2016) no. 1, pp. 100-111 | Zbl | MR | DOI
[18] Flow polytopes of signed graphs and the Kostant partition function, Int. Math. Res. Not. (2015) no. 3, pp. 830-871 | DOI | Zbl | MR
[19] From generalized permutahedra to Grothendieck polynomials via flow polytopes (2017) (https://arxiv.org/abs/1705.02418) | Zbl
[20] Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., Volume 48 (2012) no. 1, pp. 142-191 | Zbl | MR | DOI
[21] The brick polytope of a sorting network, Eur. J. Comb., Volume 33 (2012) no. 4, pp. 632-662 | Zbl | MR | DOI
[22] Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials, Electron. J. Comb., Volume 19 (2012) no. 1, P16, 18 pages | Zbl | MR
[23] Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, 1996, vi+164 pages | MR | Zbl
[24] A new perspective on -triangulations, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 6, pp. 1794-1800 | Zbl | MR | DOI
Cité par Sources :