Idempotent systems
Algebraic Combinatorics, Tome 4 (2021) no. 2, pp. 329-357 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

In this paper we introduce the notion of an idempotent system. This linear algebraic object is motivated by the structure of an association scheme. We focus on a family of idempotent systems, said to be symmetric. A symmetric idempotent system is an abstraction of the primary module for the subconstituent algebra of a symmetric association scheme. We describe the symmetric idempotent systems in detail. We also consider a class of symmetric idempotent systems, said to be P-polynomial and Q-polynomial. In the topic of orthogonal polynomials there is an object called a Leonard system. We show that a Leonard system is essentially the same thing as a symmetric idempotent system that is P-polynomial and Q-polynomial.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.159
Classification : 17B37, 15A21
Keywords: idempotent system, association scheme, Leonard pair

Nomura, Kazumasa 1 ; Terwilliger, Paul 2

1 Tokyo Medical and Dental University Kohnodai, Ichikawa 272-0827, Japan
2 University of Wisconsin Dept. of mathematics 480 Lincoln Drive Madison, WI 53706 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2021__4_2_329_0,
     author = {Nomura, Kazumasa and Terwilliger, Paul},
     title = {Idempotent systems},
     journal = {Algebraic Combinatorics},
     pages = {329--357},
     year = {2021},
     publisher = {MathOA foundation},
     volume = {4},
     number = {2},
     doi = {10.5802/alco.159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.159/}
}
TY  - JOUR
AU  - Nomura, Kazumasa
AU  - Terwilliger, Paul
TI  - Idempotent systems
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 329
EP  - 357
VL  - 4
IS  - 2
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.159/
DO  - 10.5802/alco.159
LA  - en
ID  - ALCO_2021__4_2_329_0
ER  - 
%0 Journal Article
%A Nomura, Kazumasa
%A Terwilliger, Paul
%T Idempotent systems
%J Algebraic Combinatorics
%D 2021
%P 329-357
%V 4
%N 2
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.159/
%R 10.5802/alco.159
%G en
%F ALCO_2021__4_2_329_0
Nomura, Kazumasa; Terwilliger, Paul. Idempotent systems. Algebraic Combinatorics, Tome 4 (2021) no. 2, pp. 329-357. doi: 10.5802/alco.159

Cité par Sources :