Higher discrete homotopy groups of graphs
Algebraic Combinatorics, Tome 4 (2021) no. 1, pp. 69-88 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

This paper studies a discrete homotopy theory for graphs introduced by Barcelo et al. We prove two main results. First we show that if G is a graph containing no 3- or 4-cycles, then the nth discrete homotopy group A n (G) is trivial for all n2. Second we exhibit for each n1 a natural homomorphism ψ:A n (G) n (G), where n (G) is the nth discrete cubical singular homology group, and an infinite family of graphs G for which n (G) is nontrivial and ψ is surjective. It follows that for each n1 there are graphs G for which A n (G) is nontrivial.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/alco.151
Classification : 05C99, 55Q99
Keywords: Discrete homotopy, discrete singular cubical homology, $A$-theory, Hurewicz theorem

Lutz, Bob 1

1 Life Cycle Engineering, Inc. 4900 S. Broad St. Philadelphia, PA 19112, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2021__4_1_69_0,
     author = {Lutz, Bob},
     title = {Higher discrete homotopy groups of graphs},
     journal = {Algebraic Combinatorics},
     pages = {69--88},
     year = {2021},
     publisher = {MathOA foundation},
     volume = {4},
     number = {1},
     doi = {10.5802/alco.151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.151/}
}
TY  - JOUR
AU  - Lutz, Bob
TI  - Higher discrete homotopy groups of graphs
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 69
EP  - 88
VL  - 4
IS  - 1
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.151/
DO  - 10.5802/alco.151
LA  - en
ID  - ALCO_2021__4_1_69_0
ER  - 
%0 Journal Article
%A Lutz, Bob
%T Higher discrete homotopy groups of graphs
%J Algebraic Combinatorics
%D 2021
%P 69-88
%V 4
%N 1
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.151/
%R 10.5802/alco.151
%G en
%F ALCO_2021__4_1_69_0
Lutz, Bob. Higher discrete homotopy groups of graphs. Algebraic Combinatorics, Tome 4 (2021) no. 1, pp. 69-88. doi: 10.5802/alco.151

Cité par Sources :