Voir la notice de l'article provenant de la source Numdam
It is proved that the Fréchet algebra has exactly three closed subalgebras which contain nonconstant functions and which are invariant, in the sense that whenever and is a biholomorphic map of the open unit ball of onto . One of these consists of the holomorphic functions in , the second consists of those whose complex conjugates are holomorphic, and the third is .
On démontre que dans l’algèbre de Fréchet il y a exactement trois sous-algèbres qui sont fermées, qui contiennent des fonctions non constantes, et qui sont invariantes dans le sens suivant : lorsque et est une application biholomorphe de la boule unité ouverte de sur . Ce sont (i) l’algèbre des fonctions holomorphes dans , (ii) l’algèbre des fonctions dont les conjuguées sont holomorphes, (iii) .
@article{AIF_1983__33_2_19_0, author = {Rudin, Walter}, title = {Moebius-invariant algebras in balls}, journal = {Annales de l'Institut Fourier}, pages = {19--41}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {2}, year = {1983}, doi = {10.5802/aif.914}, zbl = {0487.32012}, mrnumber = {699485}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.914/} }
Rudin, Walter. Moebius-invariant algebras in balls. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 19-41. doi : 10.5802/aif.914. http://geodesic.mathdoc.fr/articles/10.5802/aif.914/
[1] Invariant algebras on the boundaries of symmetric domains, Soviet Math. Dokl., 12 (1971), 371-374. | Zbl
,[2] Invariant algebras on noncompact Riemannian symmetric spaces, Soviet Math. Dokl., 13 (1972), 1538-1542. | Zbl | MR
,[3] Maximality of invariant algebras of functions, Sib. Math. J., 12 (1971), 1-7. | Zbl | MR
and ,[4] Polynomial approximation and hulls of sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-75. | Zbl | MR
,[5] Pompeiu's problem on spaces of constant curvature, J. d'Anal. Math., 30 (1976), 113-130. | Zbl | MR
and ,[6] Pompeiu's problem on symmetric spaces, Comment. Math. Helvetici, 55 (1980), 593-621. | Zbl | MR
and ,[7] Methoden der Mathematischen Physik, vol. II, Springer, 1937. | Zbl | JFM
and ,[8] Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, 1955. | Zbl | MR
,[9] Rotation-invariant algebras on the n-sphere, Duke Math. J., 30 (1963), 667-672. | Zbl | MR
and ,[10] Moebius-invariant function spaces on balls and spheres, Duke Math. J., 43 (1976), 841-865. | Zbl | MR
and ,[11] Function Theory in the Unit Ball of Cn, Springer, 1980. | Zbl | MR
,[12] Functional Analysis, Mc Graw-Hill, 1973. | Zbl | MR
,[13] Uniform approximation on smooth curves, Acta Math., 115 (1966), 185-198. | Zbl | MR
,[14] The Theory of Uniform Algebras, Bogden and Quigley, 1971. | Zbl | MR
,Cité par Sources :