Voir la notice de l'article provenant de la source Numdam
We prove an inequality of the type
This is then used to derive the unique continuation property for the differential inequality under suitable local integrability assumptions on the function .
Nous démontrons une inégalité de la forme
Comme applications nous obtenons la propriété de prolongement unique pour l’inégalité différentielle si avec .
@article{AIF_1981__31_3_153_0, author = {Amrein, W. O. and Berthier, A. M. and Georgescu, V.}, title = {$L^p$-inequalities for the laplacian and unique continuation}, journal = {Annales de l'Institut Fourier}, pages = {153--168}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {3}, year = {1981}, doi = {10.5802/aif.843}, mrnumber = {83g:35011}, zbl = {0468.35017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.843/} }
TY - JOUR AU - Amrein, W. O. AU - Berthier, A. M. AU - Georgescu, V. TI - $L^p$-inequalities for the laplacian and unique continuation JO - Annales de l'Institut Fourier PY - 1981 SP - 153 EP - 168 VL - 31 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.843/ DO - 10.5802/aif.843 LA - en ID - AIF_1981__31_3_153_0 ER -
%0 Journal Article %A Amrein, W. O. %A Berthier, A. M. %A Georgescu, V. %T $L^p$-inequalities for the laplacian and unique continuation %J Annales de l'Institut Fourier %D 1981 %P 153-168 %V 31 %N 3 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.843/ %R 10.5802/aif.843 %G en %F AIF_1981__31_3_153_0
Amrein, W. O.; Berthier, A. M.; Georgescu, V. $L^p$-inequalities for the laplacian and unique continuation. Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 153-168. doi : 10.5802/aif.843. http://geodesic.mathdoc.fr/articles/10.5802/aif.843/
[1] Sobolev Spaces, Academic Press, New York, 1975. | Zbl | MR
,[2] Sur le spectre ponctuel de l'opérateur de Schrödinger, C.R. Acad. Sci., Paris 290 A, (1980), 393-395 ; On the Point Spectrum of Schrödinger Operators, Ann. Sci. Ecole Normale Supérieure (to appear). | Zbl | MR | mathdoc-id
,[3] Linear Operators, Part I, Interscience, New York, 1957.
and ,[4] On the Unique Continuation Property for Schrödinger Hamiltonians, Helv. Phys. Acta, 52 (1979), 655-670.
,[5] Inequalities, Cambridge University Press, 1952. | Zbl
, and ,[6] Über die Eindeutigkeit beim Cauchy'schen Anfangswert-problem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad.-Wiss. Göttingen, II (1955), 1-12. | Zbl | MR
,[7] Linear Partial Differential Operators, Springer, Berlin, 1963. | Zbl
,[8] Unique Continuation for Schrödinger Operators with Unbounded Potentials, J. Math. Anal. Appl., 77 (1980), 482-492. | Zbl | MR
and ,[9] Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. | Zbl | MR
and ,[10] Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | Zbl
,Cité par Sources :