Voir la notice de l'article provenant de la source Numdam
On démontre que les seuls points rationnels sur de la courbe sont les pointes.
En conséquence, il n’existe pas de courbe elliptique définie sur possédant un sous-groupe cyclique rationnel d’ordre .
We prove that the only rational point of the curve are the cusps.
Consequently, there does not exist any elliptic curve defined over which possesses a rational cyclic subgroup of order .
@article{AIF_1980__30_2_17_0, author = {Mestre, Jean-Fran\c{c}ois}, title = {Points rationnels de la courbe modulaire $X_0(169)$}, journal = {Annales de l'Institut Fourier}, pages = {17--27}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {2}, year = {1980}, doi = {10.5802/aif.782}, mrnumber = {81h:10036}, zbl = {0432.14017}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.782/} }
TY - JOUR AU - Mestre, Jean-François TI - Points rationnels de la courbe modulaire $X_0(169)$ JO - Annales de l'Institut Fourier PY - 1980 SP - 17 EP - 27 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.782/ DO - 10.5802/aif.782 LA - fr ID - AIF_1980__30_2_17_0 ER -
Mestre, Jean-François. Points rationnels de la courbe modulaire $X_0(169)$. Annales de l'Institut Fourier, Tome 30 (1980) no. 2, pp. 17-27. doi : 10.5802/aif.782. http://geodesic.mathdoc.fr/articles/10.5802/aif.782/
[1] The rational points on the Jacobian of modular curves, Mat. Sbornik, 101 (143) (1976) ; traduction anglaise, Math. U.S.S.R. Sbornik, 30, 4 (1976), 478-500. | Zbl
,[2] Schémas de modules des courbes elliptiques, vol. II of the Proceedings of the International Summer School on modular functions, Antwerp (1972), Lecture Notes in Mathematics 349, Berlin-Heidelberg-New York, Springer, 1973. | Zbl
, ,[3] Die elliptischen Funktionen und ihre Anwendungen, II, Leipzig-Berlin, Teubner, 1922. | JFM
,[4] The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philo. Soc., 85, (1979), 21-23. | Zbl | MR
,[5] Parabolic points and zeta functions of modular forms (Russian), Isv. Acad. Nauk., (1972), 19-66. | Zbl
,[6] Rational isogenies of prime degree, Inventiones Mathematicae, 44 (1978), 129-163. | Zbl | MR
,[7] Rational points on certain elliptic modular curves, Proc. Symp. Pure Math., A.M.S., Providence, 24 (1973), 221-231. | Zbl | MR
,[8] Group schemes of prime order, Ann. Scient. Ec. Norm. Sup., série 4,3 (1970), 1-21. | Zbl | MR | mathdoc-id
, ,Cité par Sources :