Hölder estimates and hypoellipticity
Annales de l'Institut Fourier, Tome 26 (1976) no. 2, pp. 35-54.

Voir la notice de l'article provenant de la source Numdam

The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.

Cet article a pour but de montrer comment, en vue de prouver certains théorèmes de régularité, des estimations classiques peuvent être remplacées par des estimations höldériennes, c’est-à-dire faisant intervenir des produits de puissances de différentes semi-normes ; ces dernières peuvent parfois être plus faciles à établir.

@article{AIF_1976__26_2_35_0,
     author = {Unterberger, Andr\'e and Unterberger, Julianne},
     title = {H\"older estimates and hypoellipticity},
     journal = {Annales de l'Institut Fourier},
     pages = {35--54},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {26},
     number = {2},
     year = {1976},
     doi = {10.5802/aif.613},
     mrnumber = {54 #5611},
     zbl = {0318.35018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.613/}
}
TY  - JOUR
AU  - Unterberger, André
AU  - Unterberger, Julianne
TI  - Hölder estimates and hypoellipticity
JO  - Annales de l'Institut Fourier
PY  - 1976
SP  - 35
EP  - 54
VL  - 26
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.613/
DO  - 10.5802/aif.613
LA  - en
ID  - AIF_1976__26_2_35_0
ER  - 
%0 Journal Article
%A Unterberger, André
%A Unterberger, Julianne
%T Hölder estimates and hypoellipticity
%J Annales de l'Institut Fourier
%D 1976
%P 35-54
%V 26
%N 2
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.613/
%R 10.5802/aif.613
%G en
%F AIF_1976__26_2_35_0
Unterberger, André; Unterberger, Julianne. Hölder estimates and hypoellipticity. Annales de l'Institut Fourier, Tome 26 (1976) no. 2, pp. 35-54. doi : 10.5802/aif.613. http://geodesic.mathdoc.fr/articles/10.5802/aif.613/

[1] R. Beals and C. Fefferman, Spatially inhomogeneous pseudo-differential operators I, Comm. Pure Appl. Math., 27 (1974), 1-24. | Zbl | MR

[2] K. O. Friedrichs, with the assistance of R. Vaillancourt, Pseudo-differential operators, Lecture Notes, N. Y. Univ., 1968.

[3] L. Hörmander, Linear partial differential operators, Springer Verlag, 1963. | Zbl

[4] L. Hörmander, On the singularities of solutions of partial differential equations with constant coefficients, Symp. on linear partial differential operators, Jerusalem, June 1972.

[5] L. Hörmander, On the existence and regularity of solutions of linear pseudo-differential equations, L'Enseignement Mathématique, 17 (2) (1971), 99-163. | Zbl | MR

[6] L. Hörmander, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | Zbl | MR

[7] F. John, Continuous dependance on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585. | Zbl | MR

[8] J. Kohn, Pseudo-differential operators and hypoellipticity, Proc. Symp. Pure Math., 23 (1973), 61-69. | Zbl | MR

[9] H. Kumano-Go, Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. | Zbl | MR

[10] A. Unterberger, Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable, Ann. Inst. Fourier, 21 (1971), 85-128. | Zbl | MR | mathdoc-id

[11] A. Unterberger, Ouverts stablement convexes par rapport à un opérateur différentiel, Ann. Inst. Fourier, 22 (1972), 269-290. | Zbl | MR | mathdoc-id

[12] K. Watanabe, On the boundedness of pseudo-differential operators of type ρ, δ with 0 ≤ ρ ˭ δ ˂ 1, Tôhoku Math. J., 25 (1973), 339-345. | Zbl | MR

Cité par Sources :