Strassen's law of the iterated logarithm
Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 169-177.

Voir la notice de l'article provenant de la source Numdam

Strassen’s functional form of the law of the iterated logarithm is formulated for partial sums of random variables with values in a strict inductive limit of Frechet spaces of Hilbert space type. The proof depends on obtaining Berry-Essen estimates for Hilbert space valued random variables.

Il s’agit d’établir la forme fonctionnelle de Strassen de la loi du logarithme itéré pour les sommes partielles de variables aléatoires à valeurs dans la limite inductive stricte d’espaces de Fréchet, qui sont de type d’espace d’Hilbert. La démonstration dépend de l’obtention des estimations de Barry-Esssen pour les variables aléatoires à valeurs dans un espace d’Hilbert.

@article{AIF_1974__24_2_169_0,
     author = {Kuelbs, James D.},
     title = {Strassen's law of the iterated logarithm},
     journal = {Annales de l'Institut Fourier},
     pages = {169--177},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     number = {2},
     year = {1974},
     doi = {10.5802/aif.510},
     mrnumber = {53 #9356},
     zbl = {0275.60037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.510/}
}
TY  - JOUR
AU  - Kuelbs, James D.
TI  - Strassen's law of the iterated logarithm
JO  - Annales de l'Institut Fourier
PY  - 1974
SP  - 169
EP  - 177
VL  - 24
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.510/
DO  - 10.5802/aif.510
LA  - en
ID  - AIF_1974__24_2_169_0
ER  - 
%0 Journal Article
%A Kuelbs, James D.
%T Strassen's law of the iterated logarithm
%J Annales de l'Institut Fourier
%D 1974
%P 169-177
%V 24
%N 2
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.510/
%R 10.5802/aif.510
%G en
%F AIF_1974__24_2_169_0
Kuelbs, James D. Strassen's law of the iterated logarithm. Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 169-177. doi : 10.5802/aif.510. http://geodesic.mathdoc.fr/articles/10.5802/aif.510/

[1] J. Chover, On Strassen's version of the log log law, Z. W. verw. Geb., Vol. 8 (1967), 83-90. | Zbl | MR

[2] R. Dudley, J. Feldman, L. Le Cam, On seminorms and probabilities, and abstract Wiener space, Annals of Math., Vol. 93 (1971), 390-408. | Zbl | MR

[3] L. Gross, Lectures in modern analysis and applications II, vol. 140, Lecture notes in mathematics, Springer-Verlag, New York.

[4] J. Kuelbs, Some results for probability measures on linear topological vector spaces with an application to Strassen's log log law, Journal of Functional Analysis, Vol. 14 (1973), 28-43. | Zbl | MR

[5] J. Kuelbs and R. Le Page, The law of the iterated logarithm for Brownian motion in a Banach space, to appear in The Trans. Amer. Math. Soc. | Zbl

[6] V. Sazanov, On the ω2 test, Sankhya (ser. A), Vol. 30 (1968), 204-209.

[7] V. Sazanov, An improvement of a convergence-rate estimate, The Thy. of Prob. and its applications, Vol. 14 (1969), 640-651. | Zbl

[8] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. W. verw. Geb., Vol. 3 (1964), 211-226. | Zbl | MR

[9] J. Kuelbs and T. Kurtz, Berry-Essen Estimates in Hilbert Space and an Application to the Law of the Iterated Logarithm, to appear in the Annals of Probability. | Zbl

Cité par Sources :