Some remarks on Q-algebras
Annales de l'Institut Fourier, Tome 22 (1972) no. 4, pp. 1-11.

Voir la notice de l'article provenant de la source Numdam

We study Banach algebras that are quotients of uniform algebras and we show in particular that the class is stable by interpolation. We also show that p , (1p) are Q algebras and that A n =L 1 (Z;1+|n| α ) is a Q-algebra if and only if α>1/2.

On fait une étude des algèbres qui sont des quotients des algèbres uniformes et on démontre que cette classe est stable par interpolation. On démontre en particulier que le p , (1p) appartiennent à cette classe et que A n =L 1 (Z;1+|n| α ) appartient à cette classe si et seulement si α>1/2.

@article{AIF_1972__22_4_1_0,
     author = {Varopoulos, Nicolas Th.},
     title = {Some remarks on $Q$-algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {1--11},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     number = {4},
     year = {1972},
     doi = {10.5802/aif.432},
     mrnumber = {49 #3544},
     zbl = {0235.46074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.432/}
}
TY  - JOUR
AU  - Varopoulos, Nicolas Th.
TI  - Some remarks on $Q$-algebras
JO  - Annales de l'Institut Fourier
PY  - 1972
SP  - 1
EP  - 11
VL  - 22
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.432/
DO  - 10.5802/aif.432
LA  - en
ID  - AIF_1972__22_4_1_0
ER  - 
%0 Journal Article
%A Varopoulos, Nicolas Th.
%T Some remarks on $Q$-algebras
%J Annales de l'Institut Fourier
%D 1972
%P 1-11
%V 22
%N 4
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.432/
%R 10.5802/aif.432
%G en
%F AIF_1972__22_4_1_0
Varopoulos, Nicolas Th. Some remarks on $Q$-algebras. Annales de l'Institut Fourier, Tome 22 (1972) no. 4, pp. 1-11. doi : 10.5802/aif.432. http://geodesic.mathdoc.fr/articles/10.5802/aif.432/

[1] J. Wermer, Quotient algebras of uniform algebras, Symposium on Function algebras and rational approximation, University of Michigan 1969.

[2] A. M. Davie, Quotient algebras of uniform algebras (to appear). | Zbl

[3] L. Schwartz, Séminaire 1953-1954, Produits tensoriels topologiques, Exposé n° 7 II.

[4] A. P. Calderon, Intermediate spaces and interpolation, the complex method. Studia Math., T. xxiv (1964), 113-190. | Zbl | MR

[5] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51-111. | Zbl | MR

[6] A. Zygmund, Trigonometric series, C.I.P. (1959), vol. I, ch. VI, § 3 ; vol. II, ch. XII § 8. | Zbl

[7] N. Th. Varopoulos, Sur les quotients des algèbres uniformes, C.R. Acad. Sci. t. 274 (A) p. 1344-1346. | Zbl

[8] N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Functional Analysis, 3 (1969), 321-335. | Zbl | MR

Cité par Sources :