Voir la notice de l'article provenant de la source Numdam
For a smooth curve over a field with , for every complete intersection in of type , we prove weak approximation of adelic points of by -points at all places of (strong) potentially good reduction, if the Fano index is and if . This also applies to specializations of complex Fano manifolds with Picard rank and Fano index away from “bad primes”.
Pour une courbe lisse sur un corps de caractéristique positive , pour chaque intersection complète dans de type , nour prouvons l’approximation faible des points adeliques de par des -points sur toutes les places de forte réduction potentiellement bonne, si l’indice de Fano est au moins deux et si . Cela s’applique également aux spécialisations des variétés de Fano complexes de nombre de Picard de rang et d’indice de Fano en dehors de l’ensemble des mauvais nombres premiers.
Starr, Jason M. 1 ; Tian, Zhiyu 2 ; Zong, Runhong 3
@article{AIF_2022__72_4_1503_0, author = {Starr, Jason M. and Tian, Zhiyu and Zong, Runhong}, title = {Weak {Approximation} for {Fano} {Complete} {Intersections} in {Positive} {Characteristic}}, journal = {Annales de l'Institut Fourier}, pages = {1503--1534}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {4}, year = {2022}, doi = {10.5802/aif.3495}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.3495/} }
TY - JOUR AU - Starr, Jason M. AU - Tian, Zhiyu AU - Zong, Runhong TI - Weak Approximation for Fano Complete Intersections in Positive Characteristic JO - Annales de l'Institut Fourier PY - 2022 SP - 1503 EP - 1534 VL - 72 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.3495/ DO - 10.5802/aif.3495 LA - en ID - AIF_2022__72_4_1503_0 ER -
%0 Journal Article %A Starr, Jason M. %A Tian, Zhiyu %A Zong, Runhong %T Weak Approximation for Fano Complete Intersections in Positive Characteristic %J Annales de l'Institut Fourier %D 2022 %P 1503-1534 %V 72 %N 4 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.3495/ %R 10.5802/aif.3495 %G en %F AIF_2022__72_4_1503_0
Starr, Jason M.; Tian, Zhiyu; Zong, Runhong. Weak Approximation for Fano Complete Intersections in Positive Characteristic. Annales de l'Institut Fourier, Tome 72 (2022) no. 4, pp. 1503-1534. doi : 10.5802/aif.3495. http://geodesic.mathdoc.fr/articles/10.5802/aif.3495/
[1] Stable maps and Hurwitz schemes in mixed characteristics, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (Contemporary Mathematics), Volume 276, American Mathematical Society, 2001, pp. 89-100 | Zbl | MR | DOI
[2] Remarks on correspondences and algebraic cycles, Am. J. Math., Volume 105 (1983) no. 5, pp. 1235-1253 | Zbl | MR | DOI
[3] Counting conics in complete intersections, Acta Math. Vietnam., Volume 35 (2010) no. 1, pp. 23-30 | Zbl | MR
[4] Torsion orders of complete intersections (2016) (https://arxiv.org/abs/1605.01913)
[5] Relèvements modulo et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987) no. 2, pp. 247-270 | Zbl | MR | DOI
[6] Invariants of Fano varieties in families, Mosc. Math. J., Volume 18 (2018) no. 2, pp. 305-319 | Zbl | DOI | MR
[7] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | Zbl | DOI | MR
[8] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Publ. Math., Inst. Hautes Étud. Sci., Volume 20 (1964), pp. 101-355 ibid. 24 (1965), p. 5-231; ibid. 28 (1966), p. 5-255; ibid. 32 (1967), p. 5-361 | Zbl | mathdoc-id | MR
[9] Hwang–Mok rigidity of cominuscule homogeneous varieties in positive characteristic, Ph. D. Thesis, State University of New York at Stony Brook (2013) | MR
[10] Weak approximation over function fields, Invent. Math., Volume 163 (2006) no. 1, pp. 171-190 | Zbl | DOI | MR
[11] Every rationally connected variety over the function field of a curve has a rational point, Am. J. Math., Volume 125 (2003) no. 3, pp. 567-580 | Zbl | MR
[12] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1996, viii+320 pages | DOI | MR
[13] Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, 92, Cambridge University Press, 2004, vi+235 pages | MR | DOI
[14] Bogomolov’s theorem , Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store (1978), pp. 623-642 | MR
[15] The torsion of the group of -cycles modulo rational equivalence, Ann. Math., Volume 111 (1980) no. 3, pp. 553-569 | Zbl | MR | DOI
[16] Separable rational connectedness and weak approximation in positive characteristic (https://arxiv.org/abs/1907.07041)
[17] Weak approximation for Fano complete intersections in positive characteristic (https://arxiv.org/abs/1811.02466)
[18] Separable rational connectedness and stability, Rational points, rational curves, and entire holomorphic curves on projective varieties (Contemporary Mathematics), Volume 654, American Mathematical Society, 2015, pp. 155-159 | Zbl | MR | DOI
[19] Weak approximation for isotrivial families, J. Reine Angew. Math., Volume 752 (2019), pp. 1-23 | Zbl | MR | DOI
[20] Hypersurfaces that are not stably rational, J. Am. Math. Soc., Volume 29 (2016) no. 3, pp. 883-891 | Zbl | MR | DOI
[21] Zur Stufentheorie der Quasialgebraisch-Abgeschlossenheit kommutativer Körper, J. Chin. Math. Soc., Volume 1 (1936), pp. 81-92 | Zbl
[22] Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebr. Geom., Volume 22 (2013) no. 1, pp. 141-174 | Zbl | MR | DOI
Cité par Sources :