Voir la notice de l'article provenant de la source Numdam
For a perfect base field , we investigate arithmetic aspects of moduli spaces of quiver representations over : we study actions of the absolute Galois group of on the -valued points of moduli spaces of quiver representations over and we provide a modular interpretation of the fixed-point set using quiver representations over division algebras, which we reinterpret using moduli spaces of twisted quiver representations (we show that those spaces provide different -forms of the initial moduli space of quiver representations). Finally, we obtain that stable -representations of a quiver are definable over a certain central division algebra over their field of moduli.
Etant donné un corps parfait et une clôture algébrique de , les espaces de modules de -représentations semistables d’un carquois sont des -variétés algébriques dont nous étudions ici les propriétés arithmétiques, en particulier les points rationnels et leur interprétation modulaire. Outre les représentations à coefficients dans , apparaissent naturellement certaines représentations rationnelles dites tordues, à coefficients dans une algèbre à division définie sur et qui donnent lieu à différentes -formes de la variété des modules initiale. En guise d’application, on montre qu’une -représentation stable du carquois est définissable sur une algèbre à division centrale bien précise, elle-même définie sur le corps des modules de la représentation considérée.
Hoskins, Victoria 1 ; Schaffhauser, Florent 2
@article{AIF_2020__70_3_1259_0, author = {Hoskins, Victoria and Schaffhauser, Florent}, title = {Rational points of quiver moduli spaces}, journal = {Annales de l'Institut Fourier}, pages = {1259--1305}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {3}, year = {2020}, doi = {10.5802/aif.3334}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/} }
TY - JOUR AU - Hoskins, Victoria AU - Schaffhauser, Florent TI - Rational points of quiver moduli spaces JO - Annales de l'Institut Fourier PY - 2020 SP - 1259 EP - 1305 VL - 70 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/ DO - 10.5802/aif.3334 LA - en ID - AIF_2020__70_3_1259_0 ER -
%0 Journal Article %A Hoskins, Victoria %A Schaffhauser, Florent %T Rational points of quiver moduli spaces %J Annales de l'Institut Fourier %D 2020 %P 1259-1305 %V 70 %N 3 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/ %R 10.5802/aif.3334 %G en %F AIF_2020__70_3_1259_0
Hoskins, Victoria; Schaffhauser, Florent. Rational points of quiver moduli spaces. Annales de l'Institut Fourier, Tome 70 (2020) no. 3, pp. 1259-1305. doi : 10.5802/aif.3334. http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/
[1] On the theory of -functions, the moduli of abelian varieties, and the moduli of curves, Ann. Math., Volume 75 (1962), pp. 342-381 | MR | DOI | Zbl
[2] On the theory of automorphic functions and the problem of moduli, Bull. Am. Math. Soc., Volume 69 (1963), pp. 727-732 | MR | DOI | Zbl
[3] Representation stacks, D-branes and noncommutative geometry, Commun. Algebra, Volume 40 (2012) no. 10, pp. 3636-3651 | MR | DOI | Zbl
[4] Derived categories of twisted sheaves on Calabi–Yau manifolds, Ph. D. Thesis, Cornell University, USA (2000) | MR | DOI | Zbl
[5] Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 101, Cambridge University Press, 2006, xii+343 pages | MR | DOI | Zbl
[6] Algebraic geometry I. Schemes. With examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, 2010, viii+615 pages | MR | DOI | Zbl
[7] Fields of moduli and fields of definition of curves, Ph. D. Thesis, University of California, Berkeley, USA (2005) | MR | DOI | Zbl
[8] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | MR | DOI | Zbl
[9] A result of Gabber, 2004 (http://www.math.columbia.edu/~dejong/papers/2-gabber.pdf) | MR | DOI | Zbl
[10] Moduli of Representations of Finite Dimensional Algebras, Q. J. Math., Oxf. II. Ser., Volume 45 (1994), pp. 515-530 | MR | mathdoc-id | DOI | Zbl
[11] The fields of moduli for polarized abelian varieties and for curves, Nagoya Math. J., Volume 48 (1972), pp. 37-55 | MR | DOI | Zbl
[12] Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., Volume 101 (1975), pp. 88-110 | MR | DOI | Zbl
[13] Moduli of twisted sheaves, Duke Math. J., Volume 138 (2007) no. 1, pp. 23-118 | MR | DOI | Zbl
[14] Geometric Invariant Theory, Springer, 1993 | MR | Zbl
[15] Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, 2016, xi+298 pages | MR | DOI | Zbl
[16] Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci., Math. Sci., Volume 90 (1981) no. 2, pp. 151-166 | MR | DOI | Zbl
[17] Moduli of representations of quivers, Trends in representation theory of algebras and related topics (EMS Series of Congress Reports), European Mathematical Society, 2008, pp. 589-637 | MR | DOI | Zbl
[18] Brauer groups for quiver moduli, Algebr. Geom., Volume 4 (2017) no. 4, pp. 452-471 | MR | DOI | Zbl
[19] Hurwitz spaces, Groupes de Galois arithmétiques et différentiels (Séminaires et Congrès), Volume 13, Société Mathématique de France, 2006, pp. 313-341 | MR | DOI | Zbl
[20] Real points of coarse moduli schemes of vector bundles on a real algebraic curve, J. Symplectic Geom., Volume 10 (2012) no. 4, pp. 503-534 | MR | DOI | Zbl
[21] Wild ramification of moduli spaces for curves or for abelian varieties, Compos. Math., Volume 54 (1985) no. 3, pp. 331-372 | MR | mathdoc-id | DOI | Zbl
[22] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages (Translated from the French by Marvin Jay Greenberg) | Zbl
[23] Space of unitary vector bundles on a compact Riemann surface, Ann. Math., Volume 85 (1967), pp. 303-336 | MR | Zbl
[24] Geometric reductivity over arbitrary base, Adv. Math., Volume 26 (1977) no. 3, pp. 225-274 | MR | DOI | Zbl
[25] On analytic families of polarized abelian varieties and automorphic functions, Ann. Math., Volume 78 (1963), pp. 149-192 | MR | DOI | Zbl
[26] Stacks Project, 2017 (http://stacks.math.columbia.edu) | MR | DOI | Zbl
[27] Introduction to étale cohomology, Universitext, Springer, 1994, x+186 pages (Translated from the German by Manfred Kolster) | MR | DOI | Zbl
Cité par Sources :