Rational points of quiver moduli spaces
[Points rationnels des variétés de carquois]
Annales de l'Institut Fourier, Tome 70 (2020) no. 3, pp. 1259-1305.

Voir la notice de l'article provenant de la source Numdam

For a perfect base field k, we investigate arithmetic aspects of moduli spaces of quiver representations over k: we study actions of the absolute Galois group of k on the k ¯-valued points of moduli spaces of quiver representations over k and we provide a modular interpretation of the fixed-point set using quiver representations over division algebras, which we reinterpret using moduli spaces of twisted quiver representations (we show that those spaces provide different k-forms of the initial moduli space of quiver representations). Finally, we obtain that stable k ¯-representations of a quiver are definable over a certain central division algebra over their field of moduli.

Etant donné un corps parfait k et une clôture algébrique k ¯ de k, les espaces de modules de k ¯-représentations semistables d’un carquois Q sont des k-variétés algébriques dont nous étudions ici les propriétés arithmétiques, en particulier les points rationnels et leur interprétation modulaire. Outre les représentations à coefficients dans k, apparaissent naturellement certaines représentations rationnelles dites tordues, à coefficients dans une algèbre à division définie sur k et qui donnent lieu à différentes k-formes de la variété des modules initiale. En guise d’application, on montre qu’une k ¯-représentation stable du carquois Q est définissable sur une algèbre à division centrale bien précise, elle-même définie sur le corps des modules de la représentation considérée.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3334
Classification : 14D20, 14L24, 16G20
Keywords: Algebraic moduli problems, Geometric Invariant Theory, Representations of quivers
Mots-clés : Problèmes de modules en géométrie algébrique, Théorie Géométrique des Invariants, Représentations de carquois

Hoskins, Victoria 1 ; Schaffhauser, Florent 2

1 Freie Universität Berlin Arnimallee 3, Raum 011 14195 Berlin, Germany
2 Universidad de Los Andes Carrera 1 #18A-12 111 711 Bogotá, Colombia
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2020__70_3_1259_0,
     author = {Hoskins, Victoria and Schaffhauser, Florent},
     title = {Rational points of quiver moduli spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1259--1305},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {3},
     year = {2020},
     doi = {10.5802/aif.3334},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/}
}
TY  - JOUR
AU  - Hoskins, Victoria
AU  - Schaffhauser, Florent
TI  - Rational points of quiver moduli spaces
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 1259
EP  - 1305
VL  - 70
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/
DO  - 10.5802/aif.3334
LA  - en
ID  - AIF_2020__70_3_1259_0
ER  - 
%0 Journal Article
%A Hoskins, Victoria
%A Schaffhauser, Florent
%T Rational points of quiver moduli spaces
%J Annales de l'Institut Fourier
%D 2020
%P 1259-1305
%V 70
%N 3
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/
%R 10.5802/aif.3334
%G en
%F AIF_2020__70_3_1259_0
Hoskins, Victoria; Schaffhauser, Florent. Rational points of quiver moduli spaces. Annales de l'Institut Fourier, Tome 70 (2020) no. 3, pp. 1259-1305. doi : 10.5802/aif.3334. http://geodesic.mathdoc.fr/articles/10.5802/aif.3334/

[1] Baily, Walter. L. Jun On the theory of θ-functions, the moduli of abelian varieties, and the moduli of curves, Ann. Math., Volume 75 (1962), pp. 342-381 | MR | DOI | Zbl

[2] Baily, Walter. L. Jun On the theory of automorphic functions and the problem of moduli, Bull. Am. Math. Soc., Volume 69 (1963), pp. 727-732 | MR | DOI | Zbl

[3] Le Bruyn, Lieven Representation stacks, D-branes and noncommutative geometry, Commun. Algebra, Volume 40 (2012) no. 10, pp. 3636-3651 | MR | DOI | Zbl

[4] Căldăraru, Andrei H. Derived categories of twisted sheaves on Calabi–Yau manifolds, Ph. D. Thesis, Cornell University, USA (2000) | MR | DOI | Zbl

[5] Gille, Philippe; Szamuely, Tamás Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 101, Cambridge University Press, 2006, xii+343 pages | MR | DOI | Zbl

[6] Görtz, Ulrich; Wedhorn, Torsten Algebraic geometry I. Schemes. With examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, 2010, viii+615 pages | MR | DOI | Zbl

[7] Huggins, Bonnie Fields of moduli and fields of definition of curves, Ph. D. Thesis, University of California, Berkeley, USA (2005) | MR | DOI | Zbl

[8] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | MR | DOI | Zbl

[9] de Jong, A. J. A result of Gabber, 2004 (http://www.math.columbia.edu/~dejong/papers/2-gabber.pdf) | MR | DOI | Zbl

[10] King, Alastair D. Moduli of Representations of Finite Dimensional Algebras, Q. J. Math., Oxf. II. Ser., Volume 45 (1994), pp. 515-530 | MR | mathdoc-id | DOI | Zbl

[11] Koizumi, Shoji The fields of moduli for polarized abelian varieties and for curves, Nagoya Math. J., Volume 48 (1972), pp. 37-55 | MR | DOI | Zbl

[12] Langton, Stacy Guy Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., Volume 101 (1975), pp. 88-110 | MR | DOI | Zbl

[13] Lieblich, Max Moduli of twisted sheaves, Duke Math. J., Volume 138 (2007) no. 1, pp. 23-118 | MR | DOI | Zbl

[14] Mumford, David B.; Fogarty, John C.; Kirwan, Frances Clare Geometric Invariant Theory, Springer, 1993 | MR | Zbl

[15] Olsson, Martin Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, 2016, xi+298 pages | MR | DOI | Zbl

[16] Ramanan, Sundararaman Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci., Math. Sci., Volume 90 (1981) no. 2, pp. 151-166 | MR | DOI | Zbl

[17] Reineke, Markus Moduli of representations of quivers, Trends in representation theory of algebras and related topics (EMS Series of Congress Reports), European Mathematical Society, 2008, pp. 589-637 | MR | DOI | Zbl

[18] Reineke, Markus; Schröer, Stefan Brauer groups for quiver moduli, Algebr. Geom., Volume 4 (2017) no. 4, pp. 452-471 | MR | DOI | Zbl

[19] Romagny, Mathieu; Wewers, Stefan Hurwitz spaces, Groupes de Galois arithmétiques et différentiels (Séminaires et Congrès), Volume 13, Société Mathématique de France, 2006, pp. 313-341 | MR | DOI | Zbl

[20] Schaffhauser, Florent Real points of coarse moduli schemes of vector bundles on a real algebraic curve, J. Symplectic Geom., Volume 10 (2012) no. 4, pp. 503-534 | MR | DOI | Zbl

[21] Sekiguchi, Tsu Wild ramification of moduli spaces for curves or for abelian varieties, Compos. Math., Volume 54 (1985) no. 3, pp. 331-372 | MR | mathdoc-id | DOI | Zbl

[22] Serre, Jean-Pierre Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages (Translated from the French by Marvin Jay Greenberg) | Zbl

[23] Seshadri, Conjeeveram Srirangachari Space of unitary vector bundles on a compact Riemann surface, Ann. Math., Volume 85 (1967), pp. 303-336 | MR | Zbl

[24] Seshadri, Conjeeveram Srirangachari Geometric reductivity over arbitrary base, Adv. Math., Volume 26 (1977) no. 3, pp. 225-274 | MR | DOI | Zbl

[25] Shimura, Goro On analytic families of polarized abelian varieties and automorphic functions, Ann. Math., Volume 78 (1963), pp. 149-192 | MR | DOI | Zbl

[26] Stacks Project Authors Stacks Project, 2017 (http://stacks.math.columbia.edu) | MR | DOI | Zbl

[27] Tamme, Günter Introduction to étale cohomology, Universitext, Springer, 1994, x+186 pages (Translated from the German by Manfred Kolster) | MR | DOI | Zbl

Cité par Sources :