Gowers norms for the Thue–Morse and Rudin–Shapiro sequences
[Normes de Gowers pour les suites de Thue–Morse et de Rudin–Shapiro]
Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1897-1913.

Voir la notice de l'article provenant de la source Numdam

We estimate Gowers uniformity norms for some classical automatic sequences, such as the Thue–Morse and Rudin–Shapiro sequences. The methods are quite robust and can be extended to a broader class of sequences.

As an application, we asymptotically count arithmetic progressions of a given length in the set of integers N where the Thue–Morse (resp. Rudin–Shapiro) sequence takes the value +1.

Nous estimons les normes de Gowers de suites automatiques classiques telles que les suites de Thue–Morse et de Rudin–Shapiro. Les méthodes utilisées sont assez robustes, et peuvent être étendues à des familles de suites plus générales.

Nous en déduisons une estimation asymptotique du nombre de progressions arithmétiques d’une longueur donnée parmi l’ensemble des indices N où la suite de Thue–Morse (respectivement, la suite de Rudin–Shapiro) prend la valeur +1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3285
Classification : 11B85, 11B30
Keywords: Gowers norm, automatic sequence, Thue–Morse sequence, Rudin–Shapiro sequence
Mots-clés : Norme de Gowers, suite automatique, suite de Thue–Morse, suite de Rudin–Shapiro

Konieczny, Jakub 1

1 Mathematical Institute, University of Oxford Andrew Wiles Building Radcliffe Observatory Quarter Woodstock Road, Oxford, OX2 6GG (UK)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_4_1897_0,
     author = {Konieczny, Jakub},
     title = {Gowers norms for the {Thue{\textendash}Morse} and {Rudin{\textendash}Shapiro} sequences},
     journal = {Annales de l'Institut Fourier},
     pages = {1897--1913},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.3285/}
}
TY  - JOUR
AU  - Konieczny, Jakub
TI  - Gowers norms for the Thue–Morse and Rudin–Shapiro sequences
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1897
EP  - 1913
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.3285/
DO  - 10.5802/aif.3285
LA  - en
ID  - AIF_2019__69_4_1897_0
ER  - 
%0 Journal Article
%A Konieczny, Jakub
%T Gowers norms for the Thue–Morse and Rudin–Shapiro sequences
%J Annales de l'Institut Fourier
%D 2019
%P 1897-1913
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.3285/
%R 10.5802/aif.3285
%G en
%F AIF_2019__69_4_1897_0
Konieczny, Jakub. Gowers norms for the Thue–Morse and Rudin–Shapiro sequences. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1897-1913. doi : 10.5802/aif.3285. http://geodesic.mathdoc.fr/articles/10.5802/aif.3285/

[1] Allouche, Jean-Paul; Shallit, Jeffrey Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003, xvi+571 pages | MR | DOI | Zbl

[2] Deshouillers, Jean-Marc; Drmota, Michael; Morgenbesser, Johannes F. Subsequences of automatic sequences indexed by n c and correlations, J. Number Theory, Volume 132 (2012) no. 9, pp. 1837-1866 | MR | DOI | Zbl

[3] Drmota, Michael Subsequences of automatic sequences and uniform distribution, Uniform distribution and quasi-Monte-Carlo methods (Radon Series on Computational and Applied Mathematics), Volume 15, Walter de Gruyter, 2014, pp. 87-104 | MR | Zbl

[4] Drmota, Michael; Mauduit, Christian; Rivat, Joël The Thue–Morse sequence along squares is normal, 2013 (https://www.dmg.tuwien.ac.at/drmota/alongsquares.pdf) | Zbl

[5] Eisner, Tanja; Konieczny, Jakub Automatic sequences as good weights for ergodic theorems, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 8, pp. 4087-4115 | MR | DOI | Zbl

[6] Eisner, Tanja; Tao, Terence Large values of the Gowers–Host–Kra seminorms, J. Anal. Math., Volume 117 (2012), pp. 133-186 | MR | DOI | Zbl

[7] Fan, Aihua Oscillating sequences of higher order and topological systems of quasi-discrete spectrum, 2018 (https://arxiv.org/abs/1802.05204)

[8] Gantmacher, Feliks R. The theory of matrices. Vols. 1, 2, Chelsea Publishing, 1959 (Translated by K. A. Hirsch) | MR

[9] Gel’fond, Aleksandr O. Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., Volume 13 (1968), pp. 259-265 | MR | DOI | Zbl

[10] Godsil, Chris; Royle, Gordon Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer, 2001, xx+439 pages | MR | DOI | Zbl

[11] Gowers, William T. A new proof of Szemerédi’s theorem, Geom. Funct. Anal., Volume 11 (2001) no. 3, pp. 465-588 | MR | DOI | Zbl

[12] Green, Ben Higher-order Fourier analysis, I (Notes available from the author) | Zbl

[13] Horn, Roger A.; Johnson, Charles R. Matrix analysis, Cambridge University Press, 2013, xviii+643 pages | MR | Zbl

[14] Host, Bernard; Kra, Bryna Uniformity seminorms on and applications, J. Anal. Math., Volume 108 (2009), pp. 219-276 | MR | DOI | Zbl

[15] Mauduit, Christian Automates finis et ensembles normaux, Ann. Inst. Fourier, Volume 36 (1986) no. 2, pp. 1-25 | MR | DOI | Zbl

[16] Mauduit, Christian; Rivat, Joël La somme des chiffres des carrés, Acta Math., Volume 203 (2009) no. 1, pp. 107-148 | MR | DOI | Zbl

[17] Mauduit, Christian; Rivat, Joël Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math., Volume 171 (2010) no. 3, pp. 1591-1646 | MR | DOI | Zbl

[18] Mauduit, Christian; Rivat, Joël Prime numbers along Rudin-Shapiro sequences, J. Eur. Math. Soc., Volume 17 (2015) no. 10, pp. 2595-2642 | MR | DOI | Zbl

[19] Mauduit, Christian; Sárközy, András On finite pseudorandom binary sequences. II. The Champernowne, Rudin–Shapiro, and Thue–Morse sequences, a further construction, J. Number Theory, Volume 73 (1998) no. 2, pp. 256-276 | MR | DOI | Zbl

[20] Müllner, Clemens The Rudin–Shapiro sequence and similar sequences are normal along squares, Can. J. Math., Volume 70 (2018) no. 5, pp. 1096-1129 | MR | DOI | Zbl

[21] Müllner, Clemens; Spiegelhofer, Lukas Normality of the Thue–Morse sequence along Piatetski–Shapiro sequences, II, Isr. J. Math., Volume 220 (2017) no. 2, pp. 691-738 | MR | DOI | Zbl

[22] Tao, Terence Higher order Fourier analysis, Graduate Studies in Mathematics, 142, American Mathematical Society, 2012, x+187 pages | MR | Zbl

Cité par Sources :