Voir la notice de l'article provenant de la source Numdam
Nous poursuivons l’étude d’un contrôle épars d’un opérateur singulier. Plus précisément nous expliquons comment on peut conserver certaines propriétés de l’opérateur initial à travers un tel contrôle et décrivons quelques applications : bornitude de l’adjoint de la transformée de Riesz et du projecteur de Leray. De plus, nous nous intéresserons à donner un regard nouveau sur les dominations éparses à travers les oscillations et les fonctions carrées localisées. Aussi, nous dévoilerons une connexion entre les bons intervalles de la décomposition éparse et une décomposition atomique.
We pursue the study of a sparse control for a singular operator. More precisely, we describe how one can track some properties of the initial operator, through such a control and describe also some applications: boundedness of the adjoint of a Riesz transform and of the Leray projector. Moreover, we will be interested in giving a new insight on the sparse domination through the oscillations and the localized square functions. Also, we will reveal a connection between the good intervals of the sparse domination and the atomic decomposition for a function in a Hardy space.
Benea, Cristina 1 ; Bernicot, Frédéric 1
@article{AIF_2018__68_6_2329_0, author = {Benea, Cristina and Bernicot, Fr\'ed\'eric}, title = {Conservation de certaines propri\'et\'es \`a travers un contr\^ole \'epars d{\textquoteright}un op\'erateur et applications au projecteur de {Leray{\textendash}Hopf}}, journal = {Annales de l'Institut Fourier}, pages = {2329--2379}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3211}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.3211/} }
TY - JOUR AU - Benea, Cristina AU - Bernicot, Frédéric TI - Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf JO - Annales de l'Institut Fourier PY - 2018 SP - 2329 EP - 2379 VL - 68 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.3211/ DO - 10.5802/aif.3211 LA - fr ID - AIF_2018__68_6_2329_0 ER -
%0 Journal Article %A Benea, Cristina %A Bernicot, Frédéric %T Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf %J Annales de l'Institut Fourier %D 2018 %P 2329-2379 %V 68 %N 6 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.3211/ %R 10.5802/aif.3211 %G fr %F AIF_2018__68_6_2329_0
Benea, Cristina; Bernicot, Frédéric. Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2329-2379. doi : 10.5802/aif.3211. http://geodesic.mathdoc.fr/articles/10.5802/aif.3211/
[1] On necessary and sufficient conditions for -estimates of Riesz transforms associated to elliptic operators on and related estimates, Mem. Am. Math. Soc., Volume 186 (2007) no. 871, xviii+75 pages | MR | DOI | Zbl
[2] On the Calderón-Zygmund lemma for Sobolev functions (2008) (http://arxiv.org/abs/0810.5029)
[3] Carleson measures, trees, extrapolation, and theorems, Publ. Mat., Volume 46 (2002) no. 2, pp. 257-325 | MR | DOI | Zbl
[4] Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal., Volume 18 (2008) no. 1, pp. 192-248 | MR | DOI | Zbl
[5] Hardy spaces and divergence operators on strongly Lipschitz domains of , J. Funct. Anal., Volume 201 (2003) no. 1, pp. 148-184 | MR | DOI | Zbl
[6] Stability of weighted Laplace-Beltrami operators under -perturbation of the Riemannian metric, J. Anal. Math., Volume 68 (1996), pp. 253-276 | MR | DOI | Zbl
[7] Sparse bilinear forms for Bochner Riesz multipliers and applications, Trans. Lond. Math. Soc., Volume 4 (2017) no. 1, pp. 110-128 | MR | Zbl
[8] Multiple vector-valued inequalities via the helicoidal method, Anal. PDE, Volume 9 (2016) no. 8, pp. 1931-1988 | MR | DOI | Zbl
[9] Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE, Volume 9 (2016) no. 5, pp. 1079-1113 | MR | DOI | Zbl
[10] A note on Calderón-Zygmund singular integral convolution operators, Bull. Am. Math. Soc., Volume 16 (1987) no. 2, pp. 271-273 | MR | DOI | Zbl
[11] Interpolations by bounded analytic functions and the corona problem, Ann. Math., Volume 76 (1962), pp. 547-559 | MR | DOI | Zbl
[12] Wavelets, Calderón-Zygmund Operators and Multilinear Operators, Cambridge Studies in Advanced Mathematics, 48, Cambridge University Press, 1997, xix+314 pages | Zbl
[13] A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284 | MR | DOI | Zbl
[14] Riesz transform and perturbation, J. Geom. Anal., Volume 17 (2007) no. 2, pp. 213-226 | MR | DOI | Zbl
[15] Sharp weighted estimates for classical operators, Adv. Math., Volume 229 (2012) no. 1, pp. 408-441 | MR | DOI | Zbl
[16] Domination of multilinear singular integrals by positive sparse forms (2016) (http://arxiv.org/abs/1603.05317, to appear in J. Lond. Math. Soc.)
[17] An elementary proof of the Bound, Isr. J. Math., Volume 217 (2017), pp. 181-195 | Zbl
[18] The molecular characterization of weighted Hardy spaces, J. Funct. Anal., Volume 188 (2002) no. 2, pp. 442-460 | MR | DOI | Zbl
[19] A wavelet characterization for the dual of weighted Hardy spaces, Proc. Am. Math. Soc., Volume 137 (2009) no. 12, pp. 4219-4225 | MR | DOI | Zbl
[20] boundedness of Riesz transforms, J. Math. Anal. Appl., Volume 301 (2005) no. 2, pp. 394-400 | MR | DOI | Zbl
[21] A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. Lond. Math. Soc., Volume 42 (2010) no. 5, pp. 843-856 | Zbl
[22] Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math., Volume 226 (2011) no. 5, pp. 3912-3926 | MR | DOI | Zbl
[23] On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., Volume 121 (2013), pp. 141-161 | Zbl
[24] A simple proof of the conjecture, Int. Math. Res. Not., Volume 14 (2013), pp. 3159-3170 | MR | Zbl
[25] On pointwise estimates involving sparse operators, New York J. Math., Volume 22 (2016), pp. 341-349 http://nyjm.albany.edu:8000/j/2016/22_341.html | MR | Zbl
[26] Intuitive dyadic calculus the basics (2015) (http://arxiv.org/abs/1508.05639, to appear in Expo. Math.)
[27] Ondelettes et opérateurs. II, Actualités Mathématiques., Hermann, 1990, p. i-xii and 217–384 (Opérateurs de Calderón-Zygmund.) | MR | Zbl
[28] Classical and Multilinear Harmonic Analysis, Cambridge Studies in Advanced Mathematics, 137, Cambridge University Press, 2013, xviii+370 pages | Zbl
[29] estimates for the biest. I. The Walsh case, Math. Ann., Volume 329 (2004) no. 3, pp. 401-426 | MR | DOI | Zbl
[30] Iterations of Hardy-Littlewood maximal functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 2, pp. 272-276 | MR | DOI | Zbl
[31] Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl
Cité par Sources :