From maps between coloured operads to Swiss-Cheese algebras
[Construction d’une algèbre Swiss-Cheese à partir d’un morphisme d’opérades colorées]
Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 661-724.

Voir la notice de l'article provenant de la source Numdam

In the present work, we extract pairs of topological spaces from maps between coloured operads. We prove that those pairs are weakly equivalent to explicit algebras over the one dimensional Swiss-Cheese operad 𝒮𝒞 1 . Thereafter, we show that the pair formed by the space of long embeddings and the manifold calculus limit of (l)-immersions from d to n is an 𝒮𝒞 d+1 -algebra.

A partir d’un morphisme d’opérades colorées, on introduit un couple d’espaces topologiques que l’on identifie explicitement à une algèbre sous l’opérade Swiss-Cheese de dimension 1. Nous sommes alors en mesure d’identifier le couple formé des plongements longs et de l’approximation polynomiale des (l)-immersions de d vers n à une algèbre sous l’opérade Swiss-Cheese de dimension d+1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3175
Classification : 18D50, 55P35, 57Q45
Keywords: coloured operads, loop spaces, space of knots, model category
Mots-clés : opérades colorées, espaces de lacets, espaces de plongements, catégorie modèle

Ducoulombier, Julien 1

1 ETH Zurich Ramistrasse 101 809 Zurich (Switzerland)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2018__68_2_661_0,
     author = {Ducoulombier, Julien},
     title = {From maps between coloured operads to {Swiss-Cheese} algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {661--724},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.3175/}
}
TY  - JOUR
AU  - Ducoulombier, Julien
TI  - From maps between coloured operads to Swiss-Cheese algebras
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 661
EP  - 724
VL  - 68
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.3175/
DO  - 10.5802/aif.3175
LA  - en
ID  - AIF_2018__68_2_661_0
ER  - 
%0 Journal Article
%A Ducoulombier, Julien
%T From maps between coloured operads to Swiss-Cheese algebras
%J Annales de l'Institut Fourier
%D 2018
%P 661-724
%V 68
%N 2
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.3175/
%R 10.5802/aif.3175
%G en
%F AIF_2018__68_2_661_0
Ducoulombier, Julien. From maps between coloured operads to Swiss-Cheese algebras. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 661-724. doi : 10.5802/aif.3175. http://geodesic.mathdoc.fr/articles/10.5802/aif.3175/

[1] Arone, Gregory; Turchin, Victor On the rational homology of high dimensional analogues of spaces of long knots, Geom. Topol., Volume 18 (2014) no. 3, pp. 1261-1322 | DOI | Zbl

[2] Berger, Clemens; Moerdijk, Ieke Axiomatic homotopy theory for operads, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 805-831 | DOI | Zbl

[3] Berger, Clemens; Moerdijk, Ieke The Boardman-Vogt resolution of operads in monoidal model categories, Topology, Volume 45 (2006) no. 5, pp. 807-849 | DOI | Zbl

[4] Boardman, J. Michael; Vogt, Rainer M. Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, 347, Springer, 1973, x+257 pages | Zbl

[5] Boavida de Brito, Pedro; Weiss, Michael Spaces of smooth embeddings and configuration categories (2015) (https://arxiv.org/abs/1502.01640)

[6] Dobrinskaya, Natalya; Turchin, Victor Homology of non-k-overlapping discs, Homology Homotopy Appl., Volume 17 (2015) no. 2, pp. 261-290 | DOI | Zbl

[7] Ducoulombier, Julien Swiss-cheese action on the totalization of action-operads, Algebr. Geom. Topol., Volume 16 (2016) no. 3, 1683.1726 pages | DOI | Zbl

[8] Ducoulombier, Julien Delooping derived mapping spaces of bimodules over an operad (2017) (https://arxiv.org/abs/1704.07062)

[9] Ducoulombier, Julien; Turchin, Victor Delooping the manifold calculus tower for closed discs (2017) (https://arxiv.org/abs/1708.02203)

[10] Dwyer, William; Hess, Kathryn Long knots and maps between operads, Geom. Topol., Volume 16 (2012) no. 2, pp. 919-955 | DOI | Zbl

[11] Fresse, Benoit Modules over operads and functors, Lecture Notes in Mathematics, 1967, Springer, 2009, ix+308 pages | Zbl

[12] Goodwillie, Thomas G. Calculus. I. The first derivative of pseudoisotopy theory, K-Theory, Volume 4 (1990) no. 1, pp. 1-27 | MR | DOI | Zbl

[13] Goodwillie, Thomas G. Calculus. II. Analytic functors, K-Theory, Volume 5 (1991/92) no. 4, pp. 295-332 | MR | DOI | Zbl

[14] Goodwillie, Thomas G. Calculus. III. Taylor series, Geom. Topol., Volume 7 (2003), pp. 645-711 | MR | DOI | Zbl

[15] Goodwillie, Thomas G.; Klein, John R. Multiple disjunction for spaces of smooth embeddings, J. Topol., Volume 8 (2015) no. 3, pp. 651-674 | DOI | Zbl

[16] Goodwillie, Thomas G.; Weiss, Michael Embeddings from the point of view of immersion theory. II, Geom. Topol., Volume 3 (1999), pp. 103-118 | MR | DOI | Zbl

[17] Hoefel, Eduardo; Livernet, Muriel; Stasheff, Jim A -actions and Recognition of Relative Loop Spaces, Topology Appl., Volume 206 (2016), pp. 126-147 | DOI | Zbl

[18] Hovey, Mark Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages | Zbl

[19] Kelly, Gregory Maxwell Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, 64, Cambridge University Press, 1982 | Zbl

[20] Kontsevich, Maxim Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | DOI | Zbl

[21] May, J. P. The geometry of iterated loop spaces, Lecture Notes in Mathematics, 271, Springer, 1972, ix+175 pages | Zbl

[22] McClure, James E.; Smith, Jeffrey H. Operads and cosimplicial objects: an introduction, Axiomatic, enriched and motivic homotopy theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 131, Kluwer Academic Publishers, 2004, pp. 133-171 | DOI | Zbl

[23] Sinha, Dev P. Operads and knot spaces, J. Am. Math. Soc., Volume 19 (2006) no. 2, pp. 461-486 | DOI | Zbl

[24] Turchin, Victor Context-free manifold functor calculus and the Fulton-MacPherson operad, Algebr. Geom. Topol., Volume 13 (2013) no. 3, pp. 1243-1271 | DOI | Zbl

[25] Turchin, Victor Delooping totalization of a multiplicative operad, J. Homotopy Relat. Struct., Volume 9 (2014) no. 2, pp. 349-418 | MR | DOI | Zbl

[26] Vogt, Rainer M. Cofibrant operads and universal E -operads, Topology Appl., Volume 133 (2003) no. 1, pp. 69-87 | DOI | Zbl

[27] Voronov, Alexander A. The Swiss-cheese operad, Homotopy invariant algebraic structure (Baltimore, MD, 1998) (Contemporary Mathematics), Volume 239, American Mathematical Society, 1999, pp. 365-373 | Zbl

[28] Weiss, Michael Embeddings from the point of view of immersion theory. I, Geom. Topol., Volume 3 (1999), pp. 67-101 erratum in ibid. 15 (2011), no. 1, p. 407-409 | MR | DOI | Zbl

Cité par Sources :