Voir la notice de l'article provenant de la source Numdam
On démontre que la compacité locale, qui est une condition suffisante dans certains théorèmes de J.H.C. Whitehead et de D.E. Cohen sur les produits cartésiens, y est aussi nécessaire.
@article{AIF_1968__18_2_281_0, author = {Michael, Ernest}, title = {Local compactness and cartesian products of quotient maps and $K$-spaces}, journal = {Annales de l'Institut Fourier}, pages = {281--286}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, number = {2}, year = {1968}, doi = {10.5802/aif.300}, mrnumber = {39 #6256}, zbl = {0175.19703}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.300/} }
TY - JOUR AU - Michael, Ernest TI - Local compactness and cartesian products of quotient maps and $K$-spaces JO - Annales de l'Institut Fourier PY - 1968 SP - 281 EP - 286 VL - 18 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.300/ DO - 10.5802/aif.300 LA - en ID - AIF_1968__18_2_281_0 ER -
%0 Journal Article %A Michael, Ernest %T Local compactness and cartesian products of quotient maps and $K$-spaces %J Annales de l'Institut Fourier %D 1968 %P 281-286 %V 18 %N 2 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.300/ %R 10.5802/aif.300 %G en %F AIF_1968__18_2_281_0
Michael, Ernest. Local compactness and cartesian products of quotient maps and $K$-spaces. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 281-286. doi : 10.5802/aif.300. http://geodesic.mathdoc.fr/articles/10.5802/aif.300/
[1] Linear s-spaces, Proc. Symp. Convergence Structures, U. of Oklahoma, 1965.
,[2] Topologie Générale, Chapters 1 and 2, 3rd ed., Hermann, 1961. | Zbl
,[3] Spaces with weak topology, Quart. J. Math., Oxford Ser. (2) 5 (1954), 77-80. | Zbl | MR
,[4] Topology of metric complexes, Amer. J. Math., 74 (1952), 555-577. | Zbl | MR
.[5] Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115. | Zbl | MR
,[6] General Topology, VanNostrand, (1955). | Zbl | MR
,[7] ﬡo-spaces, J. Math. Mech., 15 (1966), 983-1002. | Zbl | MR
,[8] A note on a theorem of Borsuk, Bull. Amer. Math. Soc, 54 (1958), 1125-1132. | Zbl | MR
,Cité par Sources :