Probability and a Dirichlet problem for multiply superharmonic functions
Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 221-279.

Voir la notice de l'article provenant de la source Numdam

Soit un préfaisceau complet de fonctions “harmoniques” définies sur W. Un critère de régularité pour les points des frontières idéales de W est donné. Pour chaque sous-treillis banachique de ℬℋ W , il existe une frontière idéale qui compactifie W et qui contient une “frontière harmonique” Γ qui est l’ensemble des points réguliers ; est isométriquement isomorphe à 𝒞(Γ ) Parmi des applications se trouvent les théories frontières de Wiener et Royden et aussi les classes comparables harmoniques.

@article{AIF_1968__18_2_221_0,
     author = {Walsh, John B.},
     title = {Probability and a {Dirichlet} problem for multiply superharmonic functions},
     journal = {Annales de l'Institut Fourier},
     pages = {221--279},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {18},
     number = {2},
     year = {1968},
     doi = {10.5802/aif.299},
     zbl = {0172.38702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.299/}
}
TY  - JOUR
AU  - Walsh, John B.
TI  - Probability and a Dirichlet problem for multiply superharmonic functions
JO  - Annales de l'Institut Fourier
PY  - 1968
SP  - 221
EP  - 279
VL  - 18
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.299/
DO  - 10.5802/aif.299
LA  - en
ID  - AIF_1968__18_2_221_0
ER  - 
%0 Journal Article
%A Walsh, John B.
%T Probability and a Dirichlet problem for multiply superharmonic functions
%J Annales de l'Institut Fourier
%D 1968
%P 221-279
%V 18
%N 2
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.299/
%R 10.5802/aif.299
%G en
%F AIF_1968__18_2_221_0
Walsh, John B. Probability and a Dirichlet problem for multiply superharmonic functions. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 221-279. doi : 10.5802/aif.299. http://geodesic.mathdoc.fr/articles/10.5802/aif.299/

[1] R. Arens and I. M. Singer, Function values as boundary integrals, Proc. Amer. Math. Soc. 5, (1954), 735-745. | Zbl | MR

[2] V. Avanissian, Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Scient. Ec. Norm. Sup. 78 (1961), 101-161. | Zbl | MR | mathdoc-id

[3] H. Bauer, Šilovcher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89-136. | Zbl | MR | mathdoc-id

[4] S. Bergman, Functions of extended class in the theory of functions of several complex variables, Trans. Amer. Math. Soc. 63 (1948), 523-547. | Zbl | MR

[5] D. Blackwell, On a class of probability spaces, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 1-6. | Zbl | MR

[6] M. Brelot, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris 1961.

[7] M. Brelot, Le Problème de Dirichlet. Axiomatique et frontière de Martin ; J. de Math. 35 (1963), 297-334. | Zbl | MR

[8] H. J. Bremermann, On the conjecture of equivalence of the plurisubharmonic functions and the Hartog functions, Math. Ann. 131 (1956), 76-86. | Zbl | MR

[9] H. J. Bremermann, Note on plurisubharmonic functions and Hartogs functions, Proc. Amer. Math. Soc. 7 (1956), 771-775. | Zbl | MR

[10] H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Amer. Math. Soc. 91 (1956), 246-276. | Zbl | MR

[11] K. L. Chung and J. L. Doob, Fields, optionality and measurability, Amer. J. Math. 87 (1965), 397-424. | Zbl | MR

[12] P. Courrège and P. Priouret, Axiomatique du problème de Dirichlet et processus de Markov, Seminaire Brelot, Choquet et Deny 1963/1964. | Zbl | mathdoc-id

[13] P. Courrège and P. Priouret, Temps d'arrêt d'une fonction aléatoire : Relations d'équivalence associées et propriétés de décomposition, Publ. de l'Inst. de Statistique, Paris 14 (1965), 245-278. | Zbl | MR

[14] P. Courrège and P. Priouret, Recollements de processus de Markov, Ibid., 275-376. | Zbl | MR

[15] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. | Zbl | MR

[16] J. L. Doob, A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216-280. | Zbl | MR

[17] J. L. Doob, Probability methods applied to the first boundary value problem, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 19-54. | Zbl | MR

[18] J. L. Doob, Probability theory and the first boundary value problem, Ill. J. Math. 2 (1958), 19-36. | Zbl | MR

[19] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Zbl | MR | mathdoc-id

[20] J. Gorski, The method of extremal points and Dirichlet's problem in the space of two complex variables, Arch. Rat. Mech. Anal. 4 (1960), 412-427. | Zbl | MR

[21] J. Gorski, Remark on a certain theorem of H. J. Bremermann, Ann. Pol. Math. 11 (1962), 225-227. | Zbl | MR

[22] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950. | Zbl | MR

[23] G. A. Hunt, Markov processes and potentials, I, II, III. Ill. J. Math. 1 (1957), 44-93, 316-369 ; Ibid. 2 (1958), 151-213. | Zbl

[24] N. Ikeda, M. Nagasawa and S. Watanabe, A construction of Markov processes by piecing out, Proc. Japan Acad. 42 (1966) 370-375. | Zbl | MR

[25] S. Kakutani, Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 706-714. | Zbl | MR

[26] I. Kimura, Sur les fonctions plurisousharmoniques et les barriers, Proc. Japan Acad. 36 (1960), 639-643. | Zbl | MR

[27] H. Kunita and T. Watanabe, (to appear).

[28] Y. Kusunoki, On a generalized Dirichlet problem for plurisubharmonic functions, J. Math. Kyoto Univ. 4 (1964), 123-147. | Zbl | MR

[29] F. Leja, Une méthode élémentaire de résolution de problème de Dirichlet dans le plan, Ann. Soc. Polon. Math. 23 (1950), 230-245. | Zbl | MR

[30] P. Lelong, Les fonctions plurisousharmoniques, Ann. Soc. Ec. Norm. Sup. 62 (1945), 301-338. | Zbl | MR | mathdoc-id

[31] M. Loève, Probability Theory, Van Nostrand, Princeton, 1963. | Zbl | MR

[32] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. | Zbl | MR | JFM

[33] P. A. Meyer, Probability and Potentials, Blaisdell, 1966. | Zbl | MR

[34] J. Siciak, On function families with boundary, Pac. J. Math. 12 (1962), 375-384. | Zbl | MR

[35] J. Siciak, On some extremal functions and their applications to the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | Zbl | MR

Cité par Sources :