Un théorème de Bloch presque complexe
Annales de l'Institut Fourier, Tome 64 (2014) no. 2, pp. 401-428 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

Cet article est consacré à la démonstration d’une version presque complexe du théorème de Bloch. Considérons la réunion C de quatre J-droites en position générale dans un plan projectif presque complexe. Nous démontrons que toute suite non normale de J-disques évitant évitant la configuration C admet une sous-suite convergeant, au sens de Hausdorff, vers une partie la réunion des diagonales de C. En particulier, le complémentaire de la configuration C est hyperboliquement plongé dans le paln projectif presque complexe modulo la réunion des diagonales de la configuration C.

This article is devoted to the proof of an almost complex version of Bloch’s theorem. Let C be the reunion of four J-lines in general position in an almost complex projectif plane. We prove that any sequence of J-disks which is not normal has a subsequence that converges in Hausdorff’s sense to a subset of the reunion of the diagonals of the configuration C. In particular, the complement of the configuration C is hyperbolicaly embedded in the almost complex projectif plane modulo the reunion of the diagonals of the configuration C.

DOI : 10.5802/aif.2852
Classification : 32A18, 32H30, 32Q45, 32Q65, 32U40
Mots-clés : Hyperbolicité complexe, théorie de Nevanlinna, courbes pseudoholomorphes, courants positifs.
Keywords: Complex hyperbolicity, Nevanlinna’s theory, pseudoholomorphic curves, positive currents.

Saleur, Benoît 1

1 Département de Mathématiques de la faculté des sciences d’Orsay, Université Paris-Sud 11, 91405 Orsay Cedex
@article{AIF_2014__64_2_401_0,
     author = {Saleur, Beno{\^\i}t},
     title = {Un th\'eor\`eme de {Bloch} presque complexe},
     journal = {Annales de l'Institut Fourier},
     pages = {401--428},
     year = {2014},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {2},
     doi = {10.5802/aif.2852},
     zbl = {06387279},
     mrnumber = {3330909},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2852/}
}
TY  - JOUR
AU  - Saleur, Benoît
TI  - Un théorème de Bloch presque complexe
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 401
EP  - 428
VL  - 64
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2852/
DO  - 10.5802/aif.2852
LA  - fr
ID  - AIF_2014__64_2_401_0
ER  - 
%0 Journal Article
%A Saleur, Benoît
%T Un théorème de Bloch presque complexe
%J Annales de l'Institut Fourier
%D 2014
%P 401-428
%V 64
%N 2
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2852/
%R 10.5802/aif.2852
%G fr
%F AIF_2014__64_2_401_0
Saleur, Benoît. Un théorème de Bloch presque complexe. Annales de l'Institut Fourier, Tome 64 (2014) no. 2, pp. 401-428. doi: 10.5802/aif.2852

Cité par Sources :