Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians
[Calcul pseudodifferentiel de Rieffel et analyse spectrale des Hamiltoniens quantiques]
Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1551-1580.

Voir la notice de l'article provenant de la source Numdam

We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.

On utilise les propriétés functorielles du calcul pseudodifferentiel de Rieffel pour étudier des familles d’opérateurs associés à des systèmes dynamiques topologiques sur lesquelles agit un espace symplectique. On obtient des informations sur le spectre et le spectre essentiel à partir de la structure des quasi-orbites du système dynamique. Le comportement semi-classique des familles des spectres est aussi étudié.

DOI : 10.5802/aif.2729
Classification : 35S05, 81Q10, 46L55, 47C15
Keywords: Pseudodifferential operator, essential spectrum, random operator, semiclassical limit, noncommutative dynamical system
Mots-clés : Opérateur pseudodifferentiel, spectre essentiel, opérateur aléatoire, limite semiclassique, systéme dynamique non-commutative

Măntoiu, Marius 1

1 Universidad de Chile, Facultad de Ciencias, Departamento de Matemáticas, Las Palmeras 3425, Casilla 653 Santiago, Chile
@article{AIF_2012__62_4_1551_0,
     author = {M\u{a}ntoiu, Marius},
     title = {Rieffel{\textquoteright}s pseudodifferential calculus and spectral analysis of quantum {Hamiltonians}},
     journal = {Annales de l'Institut Fourier},
     pages = {1551--1580},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.5802/aif.2729},
     zbl = {1253.35232},
     mrnumber = {3025750},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2729/}
}
TY  - JOUR
AU  - Măntoiu, Marius
TI  - Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 1551
EP  - 1580
VL  - 62
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2729/
DO  - 10.5802/aif.2729
LA  - en
ID  - AIF_2012__62_4_1551_0
ER  - 
%0 Journal Article
%A Măntoiu, Marius
%T Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians
%J Annales de l'Institut Fourier
%D 2012
%P 1551-1580
%V 62
%N 4
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2729/
%R 10.5802/aif.2729
%G en
%F AIF_2012__62_4_1551_0
Măntoiu, Marius. Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians. Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1551-1580. doi : 10.5802/aif.2729. http://geodesic.mathdoc.fr/articles/10.5802/aif.2729/

[1] Amrein, W. O.; Boutet de Monvel, A.; Georgescu, V. C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Birkhäuser, Basel, 1996 | Zbl | MR

[2] Athmouni, N.; Măntoiu, M.; Purice, R. On the Continuity of Spectra for Families of Magnetic Pseudodifferential Operators, J. Math. Phys., Volume 51, 083517 (2010) | MR

[3] Bellissard, J.; Herrmann, D.J.L.; Zarrouati, M. Hull of Aperiodic Solids and Gap Labelling Theorems, Directions in Mathematical Quasicrystals (CRM Monograph Series), Volume 13, 2000, pp. 207-259 | Zbl | MR

[4] Carmona, R.; Lacroix, J. Spectral Theory of Random Schrödinger Operators, Birkhäuser Boston Inc., Boston, MA, 1990 | Zbl | MR

[5] Davies, E. B. Decomposing the Essential Spectrum, J. Funct. Anal., Volume 257 (2009) no. 2, pp. 506-536 | DOI | Zbl | MR

[6] de Leeuw, K.; Mirkil, H. Translation-invariant function algebras on abelian groups, Bull. Soc. Math. France, Volume 88 (1960), pp. 345-370 | Zbl | MR | mathdoc-id

[7] Folland, G. B. Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989 | Zbl | MR

[8] Georgescu, V. On the Structure of the Essential Spectrum of Elliptic Operators in Metric Spaces, J. Funct. Anal., Volume 220 (2011), pp. 1734-1765 | DOI | Zbl | MR

[9] Georgescu, V.; Iftimovici, A. Crossed Products of C * -Algebras and Spectral Analysis of Quantum Hamiltonians, Commun. Math. Phys., Volume 228 (2002), pp. 519-530 | DOI | Zbl | MR

[10] Georgescu, V.; Iftimovici, A. C * -Algebras of Quantum Hamiltonians, Operator Algebras and Mathematical Physics (Constanta, 2001), Theta, Bucharest, 2003, pp. 123-167 | MR | Zbl

[11] Georgescu, V.; Iftimovici, A. Localizations at Infinity and Essential Spectrum of Quantum Hamiltonians. I. General Theory, Rev. Math. Phys., Volume 18 (2006) no. 4, pp. 417-483 | DOI | Zbl | MR

[12] Helffer, B.; Mohamed, A. Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier, Volume 38 (1988), pp. 95-112 | DOI | mathdoc-id | Zbl | MR | EuDML

[13] Iftimie, V.; Măntoiu, M.; Purice, R. Magnetic Pseudodifferential Operators, Publ. RIMS, Volume 43 (2007) no. 3, pp. 585-623 | DOI | Zbl | MR

[14] Last, Y.; Simon, B. The Essential Spectrum of Schrödinger, Jacobi and CMV Operators, J. d’Analyse Math., Volume 98 (2006), pp. 183-220 | DOI | Zbl | MR

[15] Lauter, R.; Monthubert, B.; Nistor, V. Spectral Invariance for Certain Algebras of Pseudodifferential Operators, J. Inst. Math. Jussieu, Volume 4 (2005) no. 3, pp. 405-442 | DOI | Zbl | MR

[16] Lauter, R.; Nistor, V. Analysis of Geometric Operators on Open Manifolds: a Groupoid Approach, Quantization of Singular Symplectic Quotients (Progr. Math.), Volume 198, Birkhäuser, Basel, 2001, pp. 181-229 | Zbl | MR

[17] Lein, M.; Măntoiu, M.; Richard, S. Magnetic Pseudodifferential Operators with Coefficients in C * -algebras, Publ. RIMS Kyoto Univ., Volume 46 (2010), pp. 595-628 | Zbl | MR

[18] Măntoiu, M. Compactifications, Dynamical Systems at Infinity and the Essential Spectrum of Generalized Schödinger Operators, J. reine angew. Math., Volume 500 (2002), pp. 211-229 | DOI | Zbl | MR

[19] Măntoiu, M. On Abelian C * -Algebras that are Independent with Respect to a Filter, J. London Math. Soc., Volume 71 (2005) no. 3, pp. 740-758 | DOI | Zbl | MR

[20] Măntoiu, M.; Purice, R. The Magnetic Weyl Calculus, J. Math. Phys., Volume 45 (2004) no. 4, pp. 1394-1417 | DOI | Zbl | MR

[21] Măntoiu, M.; Purice, R.; Richard, S. Spectral and Propagation Results for Magnetic Schrödinger Operators; a C * -Algebraic Framework, J. Funct. Anal., Volume 250 (2007), pp. 42-67 | DOI | Zbl | MR

[22] Pastur, L. A.; Figotin, A. Spectra of Random and Almost Periodic Operators, Springer Verlag, Berlin, 1992 | Zbl | MR

[23] Rabinovich, V. S.; Roch, S.; Roe, J. Fredholm Indices of Band-Dominated Operators, Int. Eq. Op. Theory, Volume 49 (2004), pp. 221-238 | DOI | Zbl | MR

[24] Rabinovich, V. S.; Roch, S.; Silbermann, B. Limit Operators and their Applications in Operator Theory, Operator Theory: Advances and Applications, 150, Birkhäuser, Basel, 2004 | Zbl | MR

[25] Reed, M.; Simon, B. Methods of Modern Mathematical Physics I, Functional Analysis, Academic Press Inc., [Harcourt Brace Jovanovich Publishers], New York, second edition, 1980 | Zbl | MR

[26] Rieffel, M. A. Quantization and C * -Algebras, Doran R. S. (ed.) C * -Algebras: 1943–1993 (Contemp. Math.), Volume 167, AMS Providence, pp. 67-97 | Zbl | MR

[27] Rieffel, M. A. Deformation Quantization for Actions of d , 506, Mem. AMS, 1993 | Zbl | MR

Cité par Sources :