Voir la notice de l'article provenant de la source Numdam
Dans cette partie de la théorie des potentiels besseliens on considère les restrictions de potentiels de la classe aux domaines ouverts . On cherche à caractériser de manière intrinsèque la classe ainsi obtenue.
On attaque ce problème en définissant de manière directe (§ 2) une classe qui, pour des domaines assez réguliers, est égale à .
L’égalité est équivalente à l’existence d’un opérateur-extension , linéaire et continu, tel que soit une extension de . Si un tel opérateur transforme continûment dans pour tous les dans un intervalle , on parle d’une extension simultanée rel. ; un domaine pour lequel une telle extension simultanée existe, appartient à la classe . On donne, dans les paragraphes 7, 10, 11, des théorèmes déterminant des classes très générales de domaines appartenant à .
En particulier, on obtient que tous les domaines bornés, localement lipschitziens, et tous les polyhèdres -dimensionnels géométriques dont la frontière forme une variété -dimensionnelle, appartiennent à . Pour les domaines convexes, non-bornés, on obtient des conditions géométriques simples, nécessaires et suffisantes pour qu’ils appartiennent à (§ 12).
@article{AIF_1967__17_2_1_0, author = {Adams, Robert and Aronszajn, Nachman and Smith, K. T.}, title = {Theory of {Bessel} potentials. {II}}, journal = {Annales de l'Institut Fourier}, pages = {1--135}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {17}, number = {2}, year = {1967}, doi = {10.5802/aif.265}, mrnumber = {37 #4281}, zbl = {0185.19703}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.265/} }
TY - JOUR AU - Adams, Robert AU - Aronszajn, Nachman AU - Smith, K. T. TI - Theory of Bessel potentials. II JO - Annales de l'Institut Fourier PY - 1967 SP - 1 EP - 135 VL - 17 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.265/ DO - 10.5802/aif.265 LA - en ID - AIF_1967__17_2_1_0 ER -
%0 Journal Article %A Adams, Robert %A Aronszajn, Nachman %A Smith, K. T. %T Theory of Bessel potentials. II %J Annales de l'Institut Fourier %D 1967 %P 1-135 %V 17 %N 2 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.265/ %R 10.5802/aif.265 %G en %F AIF_1967__17_2_1_0
Adams, Robert; Aronszajn, Nachman; Smith, K. T. Theory of Bessel potentials. II. Annales de l'Institut Fourier, Tome 17 (1967) no. 2, pp. 1-135. doi : 10.5802/aif.265. http://geodesic.mathdoc.fr/articles/10.5802/aif.265/
[1] Properties of a class of double integrals, Ann. of Math. 46 (1945), 220-241. | Zbl | MR
and ,[2] On spaces of potentials connected with Lp classes, Ann. de l'Inst. Fourier, Vol. XIII (1963), 211-306. | Zbl | MR | mathdoc-id
, et ,[3] On a family of functional spaces, Theorems about restrictions and extensions, Dokl. Akad. Nauk SSSR, 126, 6 (1959) 1163-1165. | Zbl
,[4] Lebesgue spaces of differentiable functions and distributions, Proc. of Symposium in Pure Math. Vol. IV, Partial Differential Equations (1961), 33-49. | Zbl | MR
,[5] Proc. Symposium Diff. Equations, Berkeley, Calif. 1960.
,[6] Methoden der Mathematischen Physik, 2 Band Springer Verlag, 1938.
and ,[7] Caratterizzazioni della tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rendiconti Sem. Mat. Padova, Vol. 27 (1957), 248-305. | Zbl | MR | mathdoc-id
,[8] Extension of the range of a differentiable function, Duke Math. Journ. Vol. 8 (1941), 183-192. | Zbl | MR | JFM
,[9] Eine elementare Bemerkung zur reellen Analysis, Math. Zeitschrift, Vol. 30 (1929), 794-795. | JFM
,[10] Theorems about restrictions, extensions and approximation of differentiable functions of several variables (Survey Article), Usp. Mat. Nauk. Vol. 16, 5 (1961), 63-114.
,[11] Extension of C∞ functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), 625-626. | Zbl | MR
,[12] Spaces of S. L. Sobolev of fractional order, Dokl. Akad. Nauk. SSSR., Vol. 118 (1958), 243-246. | Zbl
,[13] Smoothness and differentiability conditions for functions and distributions in En, Dissertation. University of Chicago 1962.
,Cité par Sources :