Voir la notice de l'article provenant de la source Numdam
This paper is devoted to the existence of conformal metrics on with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
Ce papier est consacré à l’existence des métriques conforme sur avec courbure scalaire prescrite. Nous étendons les critères d’existence bien connus de Bahri-Coron.
Mahmoud, Randa Ben 1 ; Chtioui, Hichem 
@article{AIF_2011__61_3_971_0, author = {Mahmoud, Randa Ben and Chtioui, Hichem}, title = {Existence results for the prescribed {Scalar} curvature on $S^{3}$}, journal = {Annales de l'Institut Fourier}, pages = {971--986}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {3}, year = {2011}, doi = {10.5802/aif.2634}, zbl = {1235.35118}, mrnumber = {2918723}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2634/} }
TY - JOUR AU - Mahmoud, Randa Ben AU - Chtioui, Hichem TI - Existence results for the prescribed Scalar curvature on $S^{3}$ JO - Annales de l'Institut Fourier PY - 2011 SP - 971 EP - 986 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.2634/ DO - 10.5802/aif.2634 LA - en ID - AIF_2011__61_3_971_0 ER -
%0 Journal Article %A Mahmoud, Randa Ben %A Chtioui, Hichem %T Existence results for the prescribed Scalar curvature on $S^{3}$ %J Annales de l'Institut Fourier %D 2011 %P 971-986 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.2634/ %R 10.5802/aif.2634 %G en %F AIF_2011__61_3_971_0
Mahmoud, Randa Ben; Chtioui, Hichem. Existence results for the prescribed Scalar curvature on $S^{3}$. Annales de l'Institut Fourier, Tome 61 (2011) no. 3, pp. 971-986. doi : 10.5802/aif.2634. http://geodesic.mathdoc.fr/articles/10.5802/aif.2634/
[1] Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures et Appl., Volume 55 (1976), pp. 269-296 | Zbl | MR
[2] Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl., Volume 76 (1997) no. 10, pp. 843-850 | DOI | Zbl | MR
[3] Critical point at infinity in some variational problems, Pitman Res. Notes Math, Ser, 182, Longman Sci. Tech., Harlow, 1989 | Zbl | MR
[4] An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., Volume 81 (1996), pp. 323-466 | DOI | Zbl | MR
[5] The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., Volume 95 (1991), pp. 106-172 | DOI | Zbl | MR
[6] Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 561-649 | Zbl | MR | mathdoc-id
[7] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677 | DOI | Zbl | MR
[8] The scalar curvature equation on 2 and 3 spheres, Calc. Var., Volume 1 (1993), pp. 205-229 | DOI | Zbl | MR
[9] A perturbation result in prescribing scalar curvature on , Duke Math. J., Volume 64 (1991), pp. 27-69 Addendum 71 (1993), p. 333–335 | DOI | Zbl | MR
[10] Prescribing scalar curvature on , Part I: Apriori estimates, J. differential geometry, Volume 57 (2001), pp. 67-171 | Zbl | MR
[11] Prescribing the Scalar Curvature Problem on Three and Four Manifolds, Advanced Nonlinear Studies, Volume 3 (2003), pp. 457-470 | Zbl | MR
[12] Isolated invariant sets and the Morse index, CBMS Reg. conf-Series in Math, 38, AMS, 1978 | Zbl | MR
[13] Conformal metrics with prescribed scalar curvature, Inventiones Math., Volume 86 (1986), pp. 243-254 | DOI | Zbl | MR
[14] Cuplength Estimates on Lagrangian intersections, Comm. Pure and Applied Math, Volume XLII (1989) no. 4, pp. 335-356 | DOI | Zbl | MR
[15] Existence and conformal deformations of metrics with prescribed Gaussian and scalar curvature, Annals of Math., Volume 101 (1975), pp. 317-331 | DOI | Zbl | MR
[16] Prescribing scalar curvature on , and related problems, J. Functional Analysis, Volume 118 (1993), pp. 43-118 | DOI | Zbl | MR
[17] Prescribing scalar curvature on and related topics, Part I, Journal of Differential Equations, Volume 120 (1995), pp. 319-410 | DOI | Zbl | MR
[18] Prescribing scalar curvature on and related topics, Part II: existence and compactness, Comm. Pure Appl. Math., Volume 49 (1996), pp. 541-579 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl | MR
[19] On Liouville theorem and apriori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, Volume 4 (1998), pp. 107-130 | Zbl | MR | mathdoc-id
[20] The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, Volume 1 (1985), p. I: 165-201, II: 45–121 | Zbl | MR
[21] Lectures on the h-cobordism theorem, Princeton University Press, 1965 | Zbl | MR
[22] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495 | Zbl | MR
[23] Prescribed scalar curvature on the n-sphere, Calculus of Variations and Partial Differential Equations, Volume 4 (1996), pp. 1-25 | DOI | Zbl | MR
[24] A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., Volume 187 (1984), pp. 511-517 | DOI | Zbl | MR
Cité par Sources :