Nilpotency of self homotopy equivalences with coefficients
[Nilpotence des auto-équivalences d’homotopie avec des coefficients]
Annales de l'Institut Fourier, Tome 61 (2011) no. 1, pp. 351-364.

Voir la notice de l'article provenant de la source Numdam

In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.

Nous étudions la nilpotence de certains groupes d’auto-équivalences d’homotopie. Notre objectif principal est d’étendre, aux groupes d’homotopy localisés et/ou aux groupes homotopie avec des coefficients, le principe général de Dror et A.  Zabrodsky par lequel un groupe d’auto-équivalences d’homotopie d’un complexe fini, qui agit de façon nilpotente sur les groupes homotopie, est lui-même nilpotent

DOI : 10.5802/aif.2604
Classification : 55P10
Keywords: Self homotopy equivalence
Mots-clés : auto équivalence d’homotopie

Cuvilliez, Maxence 1 ; Murillo, Aniceto 2 ; Viruel, Antonio 3

1 Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga (Spain)
2 Universidad de Málaga Departamento de Álgebra, Geometría y Topología Ap. 59, 29080 Málaga, SPAIN
3 Universidad de Málaga, Departamento de Álgebra, Geometría y Topología, Ap. 59, 29080 Málaga, SPAIN.
@article{AIF_2011__61_1_351_0,
     author = {Cuvilliez, Maxence and Murillo, Aniceto and Viruel, Antonio},
     title = {Nilpotency of self homotopy equivalences with coefficients},
     journal = {Annales de l'Institut Fourier},
     pages = {351--364},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.5802/aif.2604},
     zbl = {1221.55008},
     mrnumber = {2828133},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2604/}
}
TY  - JOUR
AU  - Cuvilliez, Maxence
AU  - Murillo, Aniceto
AU  - Viruel, Antonio
TI  - Nilpotency of self homotopy equivalences with coefficients
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 351
EP  - 364
VL  - 61
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2604/
DO  - 10.5802/aif.2604
LA  - en
ID  - AIF_2011__61_1_351_0
ER  - 
%0 Journal Article
%A Cuvilliez, Maxence
%A Murillo, Aniceto
%A Viruel, Antonio
%T Nilpotency of self homotopy equivalences with coefficients
%J Annales de l'Institut Fourier
%D 2011
%P 351-364
%V 61
%N 1
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2604/
%R 10.5802/aif.2604
%G en
%F AIF_2011__61_1_351_0
Cuvilliez, Maxence; Murillo, Aniceto; Viruel, Antonio. Nilpotency of self homotopy equivalences with coefficients. Annales de l'Institut Fourier, Tome 61 (2011) no. 1, pp. 351-364. doi : 10.5802/aif.2604. http://geodesic.mathdoc.fr/articles/10.5802/aif.2604/

[1] Arkowitz, Martin Problems on Self-homotopy equivalences, Contemp. Math., Volume 274 (2001), pp. 309-315 | Zbl | MR

[2] Arkowitz, Martin; Lupton, Gregory; Murillo, Aniceto Subgroups of the group of self-homotopy equivalences, Contemp. Math., Volume 274 (2001), pp. 21-32 | Zbl | MR

[3] Baues, H.J. Obstruction Theory, Lectures Notes in Math., 628, Springer, 1977 | MR

[4] Dror, E.; Dwyer, W.; Kan, D. Self-homotopy equivalences of virtually nilpotent spaces, Comm. Math. Helv., Volume 56 (1981), pp. 599-614 | DOI | Zbl | MR

[5] Dror, E.; Zabrodsky, A. Unipotency and nilpotency in homotopy equivalences, Topology, Volume 18 (1979), pp. 187-197 | DOI | Zbl | MR

[6] Garvín, A.; Murillo, P. A.and Pavesic; Viruel, A. Nilpotency and localization of groups of fiber homotopy equivalences, Contemporary Math., Volume 274 (2001), pp. 145-157 | Zbl | MR

[7] Gitler, S. Operations with local coefficients, Amer. Journal of Math., Volume 82 (1963) no. 2, pp. 156-188 | DOI | Zbl | MR

[8] Gorenstein, D. Finite groups, Harper and Row, 1968 | Zbl | MR

[9] Hilton, P.; Mislin, G.; Roitberg, J. Localization of Nilpotent Groups and Spaces, Mathematics Studies, 15, North-Holland, 1975 | Zbl | MR

[10] Magnus, W.; Karrass, A.; Solitar, D. Combinatorial Group Theory, Pure and Applied mathematics, 13, Interscience Publishers, 1966 | Zbl

[11] Maruyama, K. Localization of a certain group of self-homotopy equivalences, Pacific Journal of Math., Volume 136 (1989), pp. 293-301 | Zbl | MR

[12] Maruyama, K.; Mimura, M. Nilpotent groups of the group of self-homotopy equivalences, Israel Journal of Math., Volume 72 (1990), pp. 313-319 | DOI | Zbl | MR

[13] Møller, J. Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific Jour. of Math., Volume 130 (1987) no. 1, pp. 171-186 | Zbl | MR

[14] Møller, J. Self-homotopy equivalences of H * (-;/p)-local spaces, Koday Math. Jour., Volume 12 (1989), pp. 270-281 | DOI | Zbl | MR

[15] Rutter, J. Homotopy self–equivalences 1988–1999, Contemporary Math., Volume 274 (2001), pp. 1-12 | Zbl | MR

[16] Scheerer, H.; Tanré, D. Variation zum Konzept der Lusternik-Schnirelmann Kategorie, Math. Nachr., Volume 207 (1999), pp. 183-194 | Zbl | MR

[17] Siegel, J. k-invariants in local coefficients theory, Proc. Amer. Math. Soc., Volume 29 (1971), pp. 169-174 | Zbl | MR

[18] Sullivan, D. Infinitesimal computations in topology, I.H.E.S. Publ. Math., Volume 47 (1977), pp. 269-331 | Zbl | MR | mathdoc-id

[19] Whitehead, G. Elements of Homotopy Theory, Graduate Texts in Math., 61, Springer, 1978 | Zbl | MR

[20] Wilkerson, C. Applications of minimal simplicial groups, Topology, Volume 15 (1976), pp. 115-130 | DOI | Zbl | MR

Cité par Sources :