Arithmetic differential equations in several variables
[Équations différentielles arithmétiques à plusieurs variables]
Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2685-2708.

Voir la notice de l'article provenant de la source Numdam

We survey recent work on arithmetic analogues of ordinary and partial differential equations.

On présente des résultats récents sur les analogues arithmétiques des équations différentielles ordinaires et aux dérivées partielles.

DOI : 10.5802/aif.2504
Classification : 11G07, 35G20, 11F03
Keywords: Differential equations, elliptic curves, $p$-adic numbers, modular forms
Mots-clés : équations différentielles, courbes elliptiques, nombres $p$-adiques, formes modulaires

Buium, Alexandru 1 ; Simanca, Santiago R. 1

1 University of New Mexico Department of Mathematics and Statistics Albuquerque, NM 87131 (USA)
@article{AIF_2009__59_7_2685_0,
     author = {Buium, Alexandru and Simanca, Santiago R.},
     title = {Arithmetic differential equations in several variables},
     journal = {Annales de l'Institut Fourier},
     pages = {2685--2708},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {7},
     year = {2009},
     doi = {10.5802/aif.2504},
     zbl = {1198.12003},
     mrnumber = {2649337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2504/}
}
TY  - JOUR
AU  - Buium, Alexandru
AU  - Simanca, Santiago R.
TI  - Arithmetic differential equations in several variables
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 2685
EP  - 2708
VL  - 59
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2504/
DO  - 10.5802/aif.2504
LA  - en
ID  - AIF_2009__59_7_2685_0
ER  - 
%0 Journal Article
%A Buium, Alexandru
%A Simanca, Santiago R.
%T Arithmetic differential equations in several variables
%J Annales de l'Institut Fourier
%D 2009
%P 2685-2708
%V 59
%N 7
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2504/
%R 10.5802/aif.2504
%G en
%F AIF_2009__59_7_2685_0
Buium, Alexandru; Simanca, Santiago R. Arithmetic differential equations in several variables. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2685-2708. doi : 10.5802/aif.2504. http://geodesic.mathdoc.fr/articles/10.5802/aif.2504/

[1] Barcau, M. Isogeny covariant differential modular forms and the space of elliptic curves up to isogeny, Compositio Math., Volume 137 (2003), pp. 237-273 | DOI | Zbl | MR

[2] Borger, J. The basic geometry of Witt vectors (arXiv:math/0801.1691) | Zbl

[3] Borger, J.; Wieland, B. Plethystic algebra, Adv. Math., Volume 194 (2005) no. 2, pp. 246-283 | DOI | Zbl | MR

[4] Buium, A. Intersections in jet spaces and a conjecture of S. Lang, Ann. of Math., Volume 136 (1992), pp. 583-593 | DOI | Zbl | MR

[5] Buium, A. Differential Algebra and Diophantine Geometry, Hermann, Paris, 1994 | Zbl | MR

[6] Buium, A. Differential characters of Abelian varieties over p-adic fields, Invent. Math., Volume 122 (1995), pp. 309-340 | DOI | Zbl | MR | EuDML

[7] Buium, A. Geometry of p-jets, Duke J. Math., Volume 82 (1996) no. 2, pp. 349-367 | DOI | Zbl | MR

[8] Buium, A. Differential modular forms, J. reine angew. Math., Volume 520 (2000), pp. 95-167 | DOI | Zbl | MR

[9] Buium, A. Arithmetic Differential Equations, Math. Surveys and Monographs, Volume 118, American Mathematical Society, Providence, RI, 2005, pp. xxxii+310 | Zbl | MR

[10] Buium, A.; Poonen, B. Independence of points on elliptic curves arising from special points on modular and Shimura curves, I: global results (Duke Math. J., to appear)

[11] Buium, A.; Poonen, B. Independence of points on elliptic curves arising from special points on modular and Shimura curves, II: local results (Compositio Math., to appear)

[12] Buium, A.; Saha, A. Igusa differential modular forms (preprint)

[13] Buium, A.; Simanca, S. R. Arithmetic partial differential equations (arXiv:math/0605107)

[14] Buium, A.; Simanca, S. R. Arithmetic partial differential equations II: modular curves (arXiv:0804.4856)

[15] Buium, A.; Simanca, S. R. Arithmetic Laplacians, Adv. Math., Volume 220 (2009), pp. 246-277 | DOI | Zbl | MR

[16] Deninger, C. Local L-factors of motives and regularized determinants, Invent. Math., Volume 107 (1992) no. 1, pp. 135-150 | DOI | Zbl | MR

[17] Dwork, B.; Gerotto, G.; Sullivan, F. J. An introduction to G-functions, Annals of Mathematics Studies, Volume 133, Princeton University Press, Princeton, NJ, 1994, pp. xxii+323 | Zbl | MR

[18] Greenberg, M. Schemata over local rings, Ann. of Math., Volume 73 (1961), pp. 624-648 | DOI | Zbl | MR

[19] Grothendieck, A. La théorie des classes de Chern, Bull. Soc. Math. France, Volume 86 (1958), pp. 137-154 | Zbl | MR | mathdoc-id

[20] Hurlburt, C. Isogeny covariant differential modular forms modulo p, Compositio Math., Volume 128 (2001) no. 1, pp. 17-34 | DOI | Zbl | MR

[21] Joyal, A. δ-anneaux et λ-anneaux, C.R. Math. Rep. Acad. Sci Canada, Volume 4 (1985), pp. 227-232 | Zbl | MR

[22] Kac, V.; Cheung, P. Quantum calculus, Universitext, Springer-Verlag, New York, 2002 (x+112 pp.) | Zbl | MR

[23] Kolchin, E. R. Differential algebra and algebraic groups, Pure and Applied Mathematics, Volume 54, Academic Press, New York-London, 1973, pp. xviii+446 | Zbl | MR

[24] Manin, Yu. I. Cyclotomy and analytic geometry over 𝔽 1 (arXiv:0809.1564)

[25] Manin, Yu. I. Algebraic curves over fields with differentiation, Ser. Mat., Volume 22, Izv. Akad. Nauk SSSR, 1958, pp. 737-756 AMS translations Series 2, 37 (1964), pp. 59-78 | Zbl

[26] Nekovár, J.; Schappacher, N. On the asymptotic behaviour of Heegner points, Turkish J. Math., Volume 23 (1999), pp. 549-556 | Zbl | MR

[27] Raynaud, M. Courbes sur une variété abélienne et points de torsion, Invent. Math., Volume 71 (1983), pp. 207-235 | DOI | Zbl | MR

[28] Soulé Les variétés sur le corps à un élément, Moscow Math. J., Volume 4 (2004) no. 1, pp. 217-244 | Zbl | MR

[29] Vojta, P.; Zannier, U. Jets via Hasse-Schmidt derivations, Diophantine geometry (CRM Series), Volume 4, Sc. Norm., Pisa, 2007, pp. 335-361 | MR

[30] Wilkerson, C. Lambda-rings, binomial domains, and vector bundles over (), Comm. Algebra, Volume 10 (1982) no. 3, pp. 311-328 | DOI | Zbl | MR

Cité par Sources :