Sets of multiplicity in locally compact abelian groups
Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 123-158.

Voir la notice de l'article provenant de la source Numdam

Dans tout groupe abélien localement compact G, il existe une mesure de Radon dont la transformée de Fourier tend vers zéro à l’infini et dont le support engendre dans G un sous-groupe de mesure de Haar nulle.

@article{AIF_1966__16_2_123_0,
     author = {Varopoulos, Nicolas Th.},
     title = {Sets of multiplicity in locally compact abelian groups},
     journal = {Annales de l'Institut Fourier},
     pages = {123--158},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {16},
     number = {2},
     year = {1966},
     doi = {10.5802/aif.238},
     mrnumber = {35 #3379},
     zbl = {0145.03501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.238/}
}
TY  - JOUR
AU  - Varopoulos, Nicolas Th.
TI  - Sets of multiplicity in locally compact abelian groups
JO  - Annales de l'Institut Fourier
PY  - 1966
SP  - 123
EP  - 158
VL  - 16
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.238/
DO  - 10.5802/aif.238
LA  - en
ID  - AIF_1966__16_2_123_0
ER  - 
%0 Journal Article
%A Varopoulos, Nicolas Th.
%T Sets of multiplicity in locally compact abelian groups
%J Annales de l'Institut Fourier
%D 1966
%P 123-158
%V 16
%N 2
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.238/
%R 10.5802/aif.238
%G en
%F AIF_1966__16_2_123_0
Varopoulos, Nicolas Th. Sets of multiplicity in locally compact abelian groups. Annales de l'Institut Fourier, Tome 16 (1966) no. 2, pp. 123-158. doi : 10.5802/aif.238. http://geodesic.mathdoc.fr/articles/10.5802/aif.238/

[1] N. Bourbaki, Livre VI Integration.

[2] E. Hewitt, Michigan Math. J., 5, (1958), 149-158. | Zbl

[3] I. Kaplanski, Infinite Abelian Groups, The University of Michigan press.

[4] M. Loève, Probability Theory, Van Nostrand. | Zbl

[5] W. Rudin, Fourier Stieltjes transforms of measures on independant sets, Bull. Amer. Math. Soc., 66 (1960). | Zbl

[6] W. Rudin, Fourier analysis on groups, Interscience tract, 12. | Zbl | MR

[7] R. Salem, On sets of multiplicity for trigonometric series, Amer. Journ. of Math., 64 (1942), 531-538. | Zbl | MR

[8] N. Th. Varopoulos, The functions that operate on B0 (Г) of a discrete group, Bull. Soc. Math. France, 93 (1965) (to appear). | Zbl | mathdoc-id

[9] N. Th. Varopoulos, Sur les mesures de Radon d'un groupe localement compact abélien, C.R. Acad. Sc. Paris, t. 260, 1059-1062 (1965). | Zbl

Cité par Sources :