Voir la notice de l'article provenant de la source Numdam
We show that any finite connected sum of lens spaces is diffeomorphic to a real component of a uniruled projective variety, and prove a conjecture of János Kollár.
Nous montrons qu'une somme connexe finie d'espaces lenticulaires est difféomorphe à une composante réelle d'une variété projective uniréglée et prouvons une conjecture de János Kollár.
Huisman, Johannes 1 ; Mangolte, Frédéric 2
@article{AIF_2005__55_7_2475_0, author = {Huisman, Johannes and Mangolte, Fr\'ed\'eric}, title = {Every connected sum of lens spaces is a real component of a uniruled algebraic variety}, journal = {Annales de l'Institut Fourier}, pages = {2475--2487}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {7}, year = {2005}, doi = {10.5802/aif.2167}, mrnumber = {2207390}, zbl = {1092.14070}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2167/} }
TY - JOUR AU - Huisman, Johannes AU - Mangolte, Frédéric TI - Every connected sum of lens spaces is a real component of a uniruled algebraic variety JO - Annales de l'Institut Fourier PY - 2005 SP - 2475 EP - 2487 VL - 55 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.2167/ DO - 10.5802/aif.2167 LA - en ID - AIF_2005__55_7_2475_0 ER -
%0 Journal Article %A Huisman, Johannes %A Mangolte, Frédéric %T Every connected sum of lens spaces is a real component of a uniruled algebraic variety %J Annales de l'Institut Fourier %D 2005 %P 2475-2487 %V 55 %N 7 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.2167/ %R 10.5802/aif.2167 %G en %F AIF_2005__55_7_2475_0
Huisman, Johannes; Mangolte, Frédéric. Every connected sum of lens spaces is a real component of a uniruled algebraic variety. Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2475-2487. doi : 10.5802/aif.2167. http://geodesic.mathdoc.fr/articles/10.5802/aif.2167/
[1] Sulla connessione delle superfizie razionali reali, Annali di Math., Volume 23 (1914), pp. 215-283 | JFM
[2] Algebraic realization of equivariant vector bundles, J. reine angew. Math., Volume 448 (1994), pp. 31-64 | Zbl | MR
[3] Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology, Volume 44 (2005), pp. 63-71 | DOI | Zbl | MR
[4] Variétés de Fano réelles (d'après C. Viterbo), Séminaire Bourbaki, Volume 872 (1999/2000) | Zbl | mathdoc-id
[5] The Nash conjecture for threefolds, ERA of Amer. Math. Soc., Volume 4 (1998), pp. 63-73 | Zbl | MR
[6] Real algebraic threefolds. II. Minimal model program, J. Amer. Math. Soc., Volume 12 (1999), pp. 33-83 | DOI | Zbl | MR
[7] Real algebraic, J. Math. Sci., New York, Volume 94 (1999), pp. 996-1020 | DOI | Zbl | MR
[8] The topology of real and complex algebraic varieties, Adv. Stud. Pure Math. (2001) | Zbl | MR
[9] On the Kodaira dimension of a minimal threefold, Math. Ann., Volume 281 (1988), pp. 325-332 | DOI | Zbl | MR
[10] Flip theorem and the existence of minimal models for threefolds, J. Amer. Math. Soc., Volume 1 (1988), pp. 117-253 | Zbl | MR
[11] Real algebraic manifolds, Ann. Math., Volume 56 (1952), pp. 405-421 | DOI | Zbl | MR
[12] The geometries of 3-manifolds, Bull. London Math. Soc., Volume 15 (1983), pp. 401-487 | DOI | Zbl | MR
Cité par Sources :