Sommes des chiffres de multiples d'entiers
Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2423-2474 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

Soit q, q2. Pour n, on note s q (n) la somme des chiffres de n en base q. Nous donnons des majorations de sommes d’exponentielles de la forme

G(x,y,θ;α,𝐡)= x<nx+y exp(2iπ(α 1 s q (h 1 n)++α r s q (h r n)+θn)),
pour r * , 𝐡 *r et θr. De telles sommes ont déjà été étudiées dans le cas r=1 par Gelfond, et pour r2 entre autre par Coquet et Solinas. Nos résultats étendent le domaine de validité en 𝐡 de ces précédents travaux pour r2, sont plus précis et ont l’avantage d’être uniformes en x et r et effectifs en 𝐡. Ce contrôle soigneux des paramètres nous permet d’obtenir divers types d’applications. Nous montrons par exemple que pour k2 il existe une infinité d’entiers n avec exactement k facteurs premiers et vérifiant s q (n)am (pour (m,q-1)=1). Nous obtenons également des majorations de sommes de la forme nx exp(2iπαs q (hn))f(n)f est une fonction multiplicative de module au plus 1.

Let q, q2. For n, denote by s q (n) the sum of digits of n in the q-ary digital expansion. We give upper bounds for exponential sums like

G(x,y,θ;α,bfh)= x<nx+y exp(2iπ(α 1 s q (h 1 n)++α r s q (h r n)+θn)),
with r * , 𝐡 *r and θr. The case r=1 has already been studied by Gelfond and the case r2 by Coquet and Solinas. For r2, our results are more precises and significative for a wider range of 𝐡. Furthermore they are uniform in x and θ and explicits in 𝐡. The control of these parameters is crucial for various applications given in the paper. For example we prove that if k, k2, there exists infinitely many integers n with exactly k prime factors and such that s q (n)am (for (m,q-1)=1). We also obtain upper bounds of sums of the form nx exp(2iπαs q (hn))f(n) where f is a multiplicative fonction of modulus less than 1.

DOI : 10.5802/aif.2166
Classification : 11L07, 11B85, 11A63
Mots-clés : sommes des chiffres, répartition dans les progressions arithmétiques, fonctions multiplicatives
Keywords: Sums of digits, arithmetic progression, multiplicatives functions, Sums of digits, arithmetic progression, multiplicatives functions

Dartyge, Cécile 1 ; Tenenbaum, Gérald 1

1 Université Henri Poincaré Nancy 1, Institut Élie Cartan, BP 239, 54506 Vand\oeuvre cedex (France)
@article{AIF_2005__55_7_2423_0,
     author = {Dartyge, C\'ecile and Tenenbaum, G\'erald},
     title = {Sommes des chiffres de multiples d'entiers},
     journal = {Annales de l'Institut Fourier},
     pages = {2423--2474},
     year = {2005},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {7},
     doi = {10.5802/aif.2166},
     mrnumber = {2207389},
     zbl = {05015294},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2166/}
}
TY  - JOUR
AU  - Dartyge, Cécile
AU  - Tenenbaum, Gérald
TI  - Sommes des chiffres de multiples d'entiers
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 2423
EP  - 2474
VL  - 55
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2166/
DO  - 10.5802/aif.2166
LA  - fr
ID  - AIF_2005__55_7_2423_0
ER  - 
%0 Journal Article
%A Dartyge, Cécile
%A Tenenbaum, Gérald
%T Sommes des chiffres de multiples d'entiers
%J Annales de l'Institut Fourier
%D 2005
%P 2423-2474
%V 55
%N 7
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2166/
%R 10.5802/aif.2166
%G fr
%F AIF_2005__55_7_2423_0
Dartyge, Cécile; Tenenbaum, Gérald. Sommes des chiffres de multiples d'entiers. Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2423-2474. doi: 10.5802/aif.2166

Cité par Sources :