Voir la notice de l'article provenant de la source Numdam
For algebraic number fields with real and complex embeddings and “admissible” subgroups of the multiplicative group of integer units of we construct and investigate certain -dimensional compact complex manifolds . We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when . In particular we disprove a conjecture of I. Vaisman.
Etant donnés des corps de nombres avec plongements réels et plongements complexes, et des sous groupes “admissibles” du groupe multiplicatif des entiers inversibles de , nous construisons et étudions certaines variétés complexes compactes . Entre autres, nous montrons que ces variétés ne sont pas kähleriennes, mais admettent des métriques localement conformément kähleriennes lorsque . En particulier, nous donnons un contre-exemple à une conjecture de I. Vaisman.
Oeljeklaus, Karl 1 ; Toma, Matei 
@article{AIF_2005__55_1_161_0, author = {Oeljeklaus, Karl and Toma, Matei}, title = {Non-K\"ahler compact complex manifolds associated to number fields}, journal = {Annales de l'Institut Fourier}, pages = {161--171}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2093}, mrnumber = {2141693}, zbl = {1071.32017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2093/} }
TY - JOUR AU - Oeljeklaus, Karl AU - Toma, Matei TI - Non-Kähler compact complex manifolds associated to number fields JO - Annales de l'Institut Fourier PY - 2005 SP - 161 EP - 171 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.2093/ DO - 10.5802/aif.2093 LA - en ID - AIF_2005__55_1_161_0 ER -
%0 Journal Article %A Oeljeklaus, Karl %A Toma, Matei %T Non-Kähler compact complex manifolds associated to number fields %J Annales de l'Institut Fourier %D 2005 %P 161-171 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.2093/ %R 10.5802/aif.2093 %G en %F AIF_2005__55_1_161_0
Oeljeklaus, Karl; Toma, Matei. Non-Kähler compact complex manifolds associated to number fields. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 161-171. doi : 10.5802/aif.2093. http://geodesic.mathdoc.fr/articles/10.5802/aif.2093/
[1] Number theory, Academic Press, New York-London, 1966 | Zbl
[2] Locally conformal Kähler geometry, Progress in Mathematics, Birkhäuser, Boston, 1998 | Zbl | MR
[3] On surfaces of class , Invent. Math., Volume 24 (1974), pp. 269-310 | DOI | Zbl | MR
[4] An introduction to homological algebra, Cambridge, 1994 | Zbl | MR
Cité par Sources :