Voir la notice de l'article provenant de la source Numdam
In this paper we prove that holomorphic codimension one singular foliations on have no non trivial minimal sets. We prove also that for , there is no real analytic Levi flat hypersurface in .
Dans cet article on démontre qu’un feuilletage holomorphe de codimension un dans , n’a pas de minimaux non triviaux. On démontre aussi que pour , il n’existe pas de surfaces de Levi plates, analytiques réelles, dans .
@article{AIF_1999__49_4_1369_0, author = {Lins Neto, Alcides }, title = {A note on projective {Levi} flats and minimal sets of algebraic foliations}, journal = {Annales de l'Institut Fourier}, pages = {1369--1385}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {4}, year = {1999}, doi = {10.5802/aif.1721}, mrnumber = {2000h:32047}, zbl = {0963.32022}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1721/} }
TY - JOUR AU - Lins Neto, Alcides TI - A note on projective Levi flats and minimal sets of algebraic foliations JO - Annales de l'Institut Fourier PY - 1999 SP - 1369 EP - 1385 VL - 49 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1721/ DO - 10.5802/aif.1721 LA - en ID - AIF_1999__49_4_1369_0 ER -
%0 Journal Article %A Lins Neto, Alcides %T A note on projective Levi flats and minimal sets of algebraic foliations %J Annales de l'Institut Fourier %D 1999 %P 1369-1385 %V 49 %N 4 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1721/ %R 10.5802/aif.1721 %G en %F AIF_1999__49_4_1369_0
Lins Neto, Alcides . A note on projective Levi flats and minimal sets of algebraic foliations. Annales de l'Institut Fourier, Tome 49 (1999) no. 4, pp. 1369-1385. doi : 10.5802/aif.1721. http://geodesic.mathdoc.fr/articles/10.5802/aif.1721/
[AL-N] Algebraic solutions of polynomial differential equations and foliations in dimension two, Springer Lecture Notes, 1345 (1988), 192-232. | Zbl | MR
,[BB] On the zeroes of meromorphic vector fields, Essais en l'honneur de De Rham, (1970) 29-47. | Zbl | MR
, ,[CLS1] Minimal sets of foliations on complex projective spaces, Publ. Math. IHES, 68 (1988) 187-203. | Zbl | MR | mathdoc-id | EuDML
, and ,[CLS2] Foliations with algebraic limit sets, Ann. of Math., 135 (1992) 429-446. | Zbl | MR
, and ,[E] Pseudo-convexité locale dans les variétés Kahlériennes, Ann. Inst. Fourier, 25-2 (1975), 295-314. | Zbl | MR | mathdoc-id | EuDML
,[G] Lectures on Algebraic Topology, W. A. Benjamin inc., 1967. | Zbl | MR
,[H] Differential Topology, Springer Verlag, N.Y., 1976. | Zbl
,[Ha] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, serie 3, vol. 16 (1962), 367-397. | Zbl | MR | mathdoc-id | EuDML
,[HL] Theory of Functions on Complex Manifolds, Birkhäuser, 1984. | Zbl
and ,[M] Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, 1963. | Zbl
,[MB] Some remarks on indices of holomorphic vector fields, Prépublication 97, Université de Bourgogne (1996). | Zbl
,[S] Techniques of extension of analytic objects, Marcel Dekker Inc., New-York, 1974. | Zbl
,[Sm] On gradient dynamical systems, Ann. of Math., 74 (1961). | Zbl
,[ST] Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., 172 (1971). | Zbl | MR
and ,[T] Domaines pseudo-convexes sur les variétés Kahlériennes, Jour. Math. Kyoto University, 6-3 (1967), 323-357. | Zbl | MR
,[To] Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, (1966), 31-43. | Zbl | MR | mathdoc-id
,Cité par Sources :