Voir la notice de l'article provenant de la source Numdam
First we find effective bounds for the number of dominant rational maps between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type , where , is the canonical bundle of and are some constants, depending only on .
Then we show that for any variety there exist numbers and with the following properties:
For any threefold of general type the number of dominant rational maps is bounded above by .
The number of threefolds , modulo birational equivalence, for which there exist dominant rational maps , is bounded above by .
If, moreover, is a threefold of general type, we prove that and only depend on the index of the canonical model of and on .
Nous démontrons d’abord que le nombre d’applications rationnelles dominantes , entre deux variétés projectives fixes avec fibré canonique ample, peut être majoré par . Ici , est le fibré canonique de et sont quelques constantes, dépendant seulement de .
Ensuite nous démontrons que, pour toute variété , il y a des constantes et avec les propriétés suivantes :
Pour toute variété de dimension 3 et de type général le nombre d’applications rationnelles dominantes est majoré par .
Le nombre de variétés de dimension 3 et de type général, modulo équivalence birationnelle, pour lesquelles il existe des applications rationnelles dominantes , est majoré par .
Si, de plus, est aussi une variété de dimension 3 et de type général, nous démontrons que et dépendent seulement de l’index du modèle canonique de et de .
@article{AIF_1997__47_3_801_0, author = {Bandman, Tanya and Dethloff, Gerd}, title = {Estimates of the number of rational mappings from a fixed variety to varieties of general type}, journal = {Annales de l'Institut Fourier}, pages = {801--824}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {3}, year = {1997}, doi = {10.5802/aif.1581}, mrnumber = {98h:14016}, zbl = {0868.14008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1581/} }
TY - JOUR AU - Bandman, Tanya AU - Dethloff, Gerd TI - Estimates of the number of rational mappings from a fixed variety to varieties of general type JO - Annales de l'Institut Fourier PY - 1997 SP - 801 EP - 824 VL - 47 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1581/ DO - 10.5802/aif.1581 LA - en ID - AIF_1997__47_3_801_0 ER -
%0 Journal Article %A Bandman, Tanya %A Dethloff, Gerd %T Estimates of the number of rational mappings from a fixed variety to varieties of general type %J Annales de l'Institut Fourier %D 1997 %P 801-824 %V 47 %N 3 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1581/ %R 10.5802/aif.1581 %G en %F AIF_1997__47_3_801_0
Bandman, Tanya; Dethloff, Gerd. Estimates of the number of rational mappings from a fixed variety to varieties of general type. Annales de l'Institut Fourier, Tome 47 (1997) no. 3, pp. 801-824. doi : 10.5802/aif.1581. http://geodesic.mathdoc.fr/articles/10.5802/aif.1581/
[Ban1] Surjective holomorphic mappings of projective manifolds, Siberian Math. Journ., 22 (1982), 204-210. | Zbl | MR
,[Ban2] Topological invariants of a variety and the number of its holomorphic mappings, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, RIMS, Kyoto University, 1992, 188-202.
,[BanMar] On the number of rational maps between varieties of general type, J. Math. Sci. Univ. Tokyo, 1 (1994), 423-433. | Zbl | MR
, ,[BPV] Compact complex surfaces, Springer Verlag, 1984. | Zbl | MR
, , ,[Ben] Sur l'anneau canonique de certaine variété de dimension 3, Invent. Math., 73 (1983), 157-164. | Zbl | MR
,[BinFle] On the fibers of analytic mappings, V. Ancona, A. Silva (Eds.): Complex Analysis and Geometry, Plenum Press, 1993, 45-101. | Zbl | MR
, ,[CatSch] Bounds for stable bundles and degrees of Weierstrass schemes, Math. Ann., 293 (1992), 579-594. | Zbl | MR
, ,[DelKat] Groupes de Monodromie en Géometrie Algébrique, (SGA 7 II), Exp. XVII, LNM 340 (1973), Springer Verlag. | Zbl | MR
, ,[Dem] A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. | Zbl | MR
,[DesMen1] Applications rationelles séparables dominantes sur une variété de type général, Bull. Soc. Math. France, 106 (1978), 279-287. | Zbl | mathdoc-id | EuDML
and ,[DesMen2] Surfaces de type géneral dominées par une variété fixe, C.R. Acad. Sc. Paris, Ser.A, 288 (1979), 765-767. | Zbl | MR
and ,[DesMen3] Surfaces de type géneral dominées par une variété fixe II, C.R. Acad. Sc. Paris, Ser.A, 291 (1980), 587-590. | Zbl
and ,[Det] Iitaka-Severi's Conjecture for complex threefolds, Preprint Mathematica Gottingensis, 29-1995, Duke eprint 9505016.
,[Elk] Rationalité des singularités canoniques, Invent. Math., 64 (1981), 1-6. | Zbl | MR | EuDML
,[Flen] Rational singularities, Arch. Math., 36 (1981), 35-44. | Zbl
,[Flet] Contributions to Riemann-Roch on projective threefolds with only canonical singularities and applications, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 221-231. Proc Symp. in Pure Math., vol. 46, 1987. | Zbl
,[Fra] Un Teorema sulle involuzioni irrazionali., Rend. Circ. Mat. Palermo, 36 (1913), 368. | JFM
,[Fuj] Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Japan, 38 (1986), 20-37. | Zbl | MR
,[FulLaz] Positive polynomials for ample vector bundles, Ann. Math., 118 (1983), 35-60. | Zbl | MR
, ,[Gra] Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. IHES, 5 (1960), 1-64. | Zbl | mathdoc-id | EuDML
,[GriHar] Principles of Algebraic Geometry, John Wiley and Sons, 1978. | Zbl | MR
and ,[Gro] EGA III, Publ. IHES, 17 (1963), 1-91. | mathdoc-id
,[Han] Stability of the pluricanonical maps of threefolds, T. Oda (Ed.): Algebraic Geometry, Sendai 1985, 185-202. Advanced Studies in Pure Math., vol. 10, 1987. | Zbl
,[Har] Algebraic Geometry, Springer Verlag, 1977. | Zbl | MR
,[Hir] Resolution of singularities of an algebraic variety over a field of characteristic zero I, Ann. Math., 79 (1964), 109-326. | Zbl | MR
,[HowSom1] On the orders of the automorphism groupes of certain projective manifolds, J. Hano et al. (Eds.): Manifolds and Lie Groupes. Progress in Math., 14 Birkhäuser 1981, 145-158. | Zbl | MR
, ,[HowSom2] On the theorem of de Franchis, Annali Scuola Norm. Sup. Pisa, 10 (1983), 429-436. | Zbl | MR | mathdoc-id | EuDML
and ,[Iit] Algebraic Geometry, Springer Verlag, 1982. | Zbl | MR
,[Kan] Bounds on the number of non-rational subfields of a function field, Inv. Math., 85 (1986), 199-215. | Zbl | MR | EuDML
,[Kaw] On the finiteness of generators of pluricanonical ring for a threefold of general type, Amer. J. Math., 106 (1984), 1503-1512. | Zbl | MR
,[Kob] Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. | Zbl | MR
,[KobOch] Meromorphic mappings into complex spaces of general type, Inv. Math., 31 (1975), 7-16. | Zbl | MR | EuDML
, ,[Kol1] Towards moduli of singular varieties, Compos. Math., 56 (1985), 369-398. | Zbl | MR | mathdoc-id | EuDML
,[Kol2] Higher direct images of dualizing sheaves I, Annals of Math., 123, 11-42. | Zbl | MR
,[KolMor] Classification of three-dimensional flips, J. of the AMS, 5 (1992), 533-703. | Zbl | MR
and ,[Luo1] Global 2-forms on regular threefolds of general type, Duke Math. J., 71 (1993), 859-869. | Zbl | MR
,[Luo2] Plurigenera of regular threefolds, Math. Z., 217 (1994), 37-46. | Zbl | MR | EuDML
,[Mae1] Families of varieties dominated by a variety, Proc. Japan Acad., Ser. A, 55 (1979), 146-151. | Zbl | MR
,[Mae2] A finiteness property of variety of general type, Math. Ann., 262 (1983), 101-123. | Zbl | MR | EuDML
,[Mae3] Diophantine problem of algebraic varieties and Hodge theory, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 167-187. RIMS, Kyoto University, 1992.
,[MatMum] Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., 86 (1964), 668-684. | Zbl | MR
, ,[Mil] On the Betti numbers of real projective varieties, Proc. AMS, 15 (1964), 275-280. | Zbl | MR
,[Mor] Flip theorem and the existence of minimal models for threefolds, J. AMS, 1 (1988), 117-253. | Zbl | MR
,[Nog] Meromorphic mappings into compact hyperbolic complex spaces and geometric diophantine problems, Inte. J. Math., 3 (1992), 277-289, 677. | Zbl | MR
,[Rei1] Canonical threefolds, A. Beauville (Ed.): Algebraic Geometry, Angers 1979, 273-310, Sijthoff and Noordhoff, 1980. | Zbl
,[Rei2] Young person's guide to canonical singularities, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 345-414. Proc Symp. in Pure Math., 46, 1987. | Zbl
,[Sam] Complements a un article de Hans Grauert sur la conjecture de Mordell, Publ. Math. IHES, 29 (1966), 311-318. | Zbl | MR | mathdoc-id | EuDML
,[Suz] Moduli spaces of holomorphic mappings into hyperbolically embedded complex spaces and hyperbolic fibre spaces, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 157-166 RIMS, Kyoto University 1992.
,[Sza] Bounding the automorphisms groups, Math. Ann., 304 (1996), 801-811. | Zbl | MR | EuDML
,[Tsa1] Dominating the varieties of general type, to appear: J. reine angew. Math. (1996), 29 pages. | Zbl | EuDML
,[Tsa2] Dominant maps and dominated surfaces of general type, Preprint (1996), 44 pages.
,[Tsa3] Chow varieties and finiteness theorems for dominant maps, Preprint (1996), 33 pages. | Zbl
,[Uen] Classification theory of algebraic varieties and compact complex spaces, LNM 439 (1975), Springer Verlag. | Zbl | MR
,[ZaiLin] Finiteness theorems for holomorphic maps, Several Complex Variables III, Encyclopaedia Math. Sciences, vol., 9, Springer Verlag, 1989, 113-172. | Zbl
and ,Cité par Sources :