Multisummability of formal power series solutions of nonlinear meromorphic differential equations
Annales de l'Institut Fourier, Tome 42 (1992) no. 3, pp. 517-540 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

In this paper a proof is given of a theorem of J. Écalle that formal power series solutions of nonlinear meromorphic differential equations are multisummable.

Dans cet article on donne une démonstration d’un théorème de J. Écalle sur la multisommabilité des solutions formelles des équations différentielles méromorphes non-linéaires.

@article{AIF_1992__42_3_517_0,
     author = {Braaksma, Boele L. J.},
     title = {Multisummability of formal power series solutions of nonlinear meromorphic differential equations},
     journal = {Annales de l'Institut Fourier},
     pages = {517--540},
     year = {1992},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {42},
     number = {3},
     doi = {10.5802/aif.1301},
     mrnumber = {93j:34006},
     zbl = {0759.34003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1301/}
}
TY  - JOUR
AU  - Braaksma, Boele L. J.
TI  - Multisummability of formal power series solutions of nonlinear meromorphic differential equations
JO  - Annales de l'Institut Fourier
PY  - 1992
SP  - 517
EP  - 540
VL  - 42
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1301/
DO  - 10.5802/aif.1301
LA  - en
ID  - AIF_1992__42_3_517_0
ER  - 
%0 Journal Article
%A Braaksma, Boele L. J.
%T Multisummability of formal power series solutions of nonlinear meromorphic differential equations
%J Annales de l'Institut Fourier
%D 1992
%P 517-540
%V 42
%N 3
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1301/
%R 10.5802/aif.1301
%G en
%F AIF_1992__42_3_517_0
Braaksma, Boele L. J. Multisummability of formal power series solutions of nonlinear meromorphic differential equations. Annales de l'Institut Fourier, Tome 42 (1992) no. 3, pp. 517-540. doi: 10.5802/aif.1301

Cité par Sources :