Holomorphic foliations in (2) having an invariant algebraic curve
Annales de l'Institut Fourier, Tome 41 (1991) no. 4, pp. 883-903.

Voir la notice de l'article provenant de la source Numdam

We give estimations for the degree of separatrices of algebraic foliations in CP(2).

Nous estimons le degré des séparatrices d’un feuilletage algébrique de CP(2) en fonction du degré du feuilletage.

@article{AIF_1991__41_4_883_0,
     author = {Cerveau, Dominique and Lins Neto, Alcides },
     title = {Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve},
     journal = {Annales de l'Institut Fourier},
     pages = {883--903},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {4},
     year = {1991},
     doi = {10.5802/aif.1278},
     mrnumber = {93b:32050},
     zbl = {0734.34007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1278/}
}
TY  - JOUR
AU  - Cerveau, Dominique
AU  - Lins Neto, Alcides 
TI  - Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve
JO  - Annales de l'Institut Fourier
PY  - 1991
SP  - 883
EP  - 903
VL  - 41
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1278/
DO  - 10.5802/aif.1278
LA  - en
ID  - AIF_1991__41_4_883_0
ER  - 
%0 Journal Article
%A Cerveau, Dominique
%A Lins Neto, Alcides 
%T Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve
%J Annales de l'Institut Fourier
%D 1991
%P 883-903
%V 41
%N 4
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1278/
%R 10.5802/aif.1278
%G en
%F AIF_1991__41_4_883_0
Cerveau, Dominique; Lins Neto, Alcides . Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve. Annales de l'Institut Fourier, Tome 41 (1991) no. 4, pp. 883-903. doi : 10.5802/aif.1278. http://geodesic.mathdoc.fr/articles/10.5802/aif.1278/

[1] H. Cartan, Sur le premier problème de Cousin, C.R. Acad. Sc., 207 (1938), 558-560. | Zbl | JFM

[2] D. Cerveau, J. F. Mattei, Formes intégrables holomorphes singulières, Asterisque, 97 (1983). | Zbl | MR | mathdoc-id

[3] J. C. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math., 708 (1979). | Zbl | MR

[4] A. Lins Neto, Algebraic solutions of polynomial differential equations and foliations in dimension two, in Holomorphic dynamics, Lect. Notes in Math., 1345 (1988). | Zbl | MR

[5] Poincaré, Sur l'intégration algébrique des équations diff. du 1er ordre, Rendiconti del circolo matematico di Palermo, t. 11, p. 193-239. | JFM

[6] K. Saïto, On a generalisation of the Rham Lemma, Ann. Inst. Fourier, 26-2 (1976), 165-170. | Zbl | MR | mathdoc-id

[7] K. Saïto, Quasi homogene isolierte singularitäten von Hyperflächen, Invent. Math., 14 (1971), 123-142. | Zbl | MR

[8] C. Camacho, A. Lins Neto, P. Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. of Diff. Geometry, vol. 20, n° 1 (1984), 143-174. | Zbl | MR

Cité par Sources :