Banach spaces which are -ideals in their bidual have property
Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 361-371
Cet article a éte moissonné depuis la source Numdam
We show that every Banach space which is an -ideal in its bidual has the property of Pelczynski. Several consequences are mentioned.
Nous montrons que tout espace de Banach qui est -idéal de son bidual a la propriété de A. Pelczynski, et mentionnons quelques conséquences.
@article{AIF_1989__39_2_361_0,
author = {Godefroy, Gilles and Li, D.},
title = {Banach spaces which are $M$-ideals in their bidual have property $(u)$},
journal = {Annales de l'Institut Fourier},
pages = {361--371},
year = {1989},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {39},
number = {2},
doi = {10.5802/aif.1170},
mrnumber = {90j:46020},
zbl = {0659.46014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1170/}
}
TY - JOUR AU - Godefroy, Gilles AU - Li, D. TI - Banach spaces which are $M$-ideals in their bidual have property $(u)$ JO - Annales de l'Institut Fourier PY - 1989 SP - 361 EP - 371 VL - 39 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1170/ DO - 10.5802/aif.1170 LA - en ID - AIF_1989__39_2_361_0 ER -
%0 Journal Article %A Godefroy, Gilles %A Li, D. %T Banach spaces which are $M$-ideals in their bidual have property $(u)$ %J Annales de l'Institut Fourier %D 1989 %P 361-371 %V 39 %N 2 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1170/ %R 10.5802/aif.1170 %G en %F AIF_1989__39_2_361_0
Godefroy, Gilles; Li, D. Banach spaces which are $M$-ideals in their bidual have property $(u)$. Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 361-371. doi: 10.5802/aif.1170
Cité par Sources :
