Voir la notice de l'article provenant de la source Numdam
Let and be holomorphic common eigenforms of all Hecke operators for the congruence subgroup of with “Nebentypus” character and and of weight and , respectively. Define the Rankin product of and by
Supposing and to be ordinary at a prime , we shall construct a -adically analytic -function of three variables which interpolate the values for integers with by regarding all the ingredients , and as variables. Here is the Petersson self-inner product of .
Soient et deux formes paraboliques pour le sous-groupe de , propre pour tous les opérateurs de Hecke, de caractère respectivement et , de poids et . Définissons le produit de Rankin de et par la formule
En supposant que et sont ordinaires en , nombre premier , nous allons construire une fonction analytique -adique de trois variables qui interpole les valeurs
en regardant tous les ingrédients comme variables, où est le produit de Petersson de .
@article{AIF_1988__38_3_1_0, author = {Hida, Haruzo}, title = {A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. {II}}, journal = {Annales de l'Institut Fourier}, pages = {1--83}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {3}, year = {1988}, doi = {10.5802/aif.1141}, mrnumber = {89k:11120}, zbl = {0645.10028}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1141/} }
TY - JOUR AU - Hida, Haruzo TI - A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II JO - Annales de l'Institut Fourier PY - 1988 SP - 1 EP - 83 VL - 38 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1141/ DO - 10.5802/aif.1141 LA - en ID - AIF_1988__38_3_1_0 ER -
%0 Journal Article %A Hida, Haruzo %T A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II %J Annales de l'Institut Fourier %D 1988 %P 1-83 %V 38 %N 3 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1141/ %R 10.5802/aif.1141 %G en %F AIF_1988__38_3_1_0
Hida, Haruzo. A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II. Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 1-83. doi : 10.5802/aif.1141. http://geodesic.mathdoc.fr/articles/10.5802/aif.1141/
[1] Algèbre, Paris, Hermann, 1970.
,[2] Algèbre commutative, Paris, Hermann, 1961.
,[3] Représentations cuspidales du groupe linéaire, Ann. Scient. Ec. Norm. Sup., 4e-serie, 17 (1984), 191-225. | Zbl | MR | mathdoc-id
,[4] On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. | Zbl | MR
,[5] Les constantes des équations fonctionnelles des fonctions L, In "Modular functions of one variables II," Lectures notes in Math., 349 (1973), 501-595. | Zbl | MR
,[6] Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33 (1979), part 2, 313-346. | Zbl | MR
,[7] Automorphic forms on adele groups, Ann. of Math. Studies No. 83, Princeton, Princeton Univ. Press, 1975. | Zbl | MR
,[8] A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ec. Norm. Sup., 4e-serie, 11 (1978), 471-542. | Zbl | MR | mathdoc-id
and ,[9] Theorie der Eisensteinschen Reiben höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Hamb., 5 (1927), 199-224 (Werke No. 24). | JFM
,[10] Congruences of cusp forms and special values of their zeta functions, Inventiones Math., 63 (1981), 225-261. | Zbl | MR
,[11] A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I, Inventiones Math., 79 (1985), 159-195. | Zbl | MR
,[12] Congruences of cusp forms and Hecke algebras, Séminaire de Théorie des Nombres, Paris, 1983-1984, Progress in Math., 59, 133-146. | Zbl | MR
,[13] Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ec. Norm. Sup., 4e-série, 19 (1986), 231-273. | Zbl | MR | mathdoc-id
,[14] Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inventiones Math., 85 (1986), 545-613. | Zbl | MR
,[15] Hecke algebras for GL1 and GL2, Séminaire de Théorie des Nombres, Paris 1984-1985, Progress in Math., 63 (1986), 131-163. | Zbl | MR
,[16] Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., 110 (1988), 323-382. | Zbl | MR
,[17] Automorphic forms on GL(2), Lecture notes in Math., 114, Berlin-Heidelberg-New York, Springer, 1970. | Zbl | MR
and ,[18] Automorphic forms on GL(2), II, Lecture notes in Math., 278, Berlin-Heidelberg-New York, Springer, 1972. | Zbl | MR
,[19] Higher congruences between modular forms, Ann. of Math., 101 (1975), 332-367. | Zbl | MR
,[20] p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. | Zbl | MR
,[21] Cyclotomic fields, Grad. Texts in Math., 59, Berlin-Hiedelberg-New York, Springer, 1978. | Zbl | MR
,[22] Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977), 33-186. | Zbl | MR | mathdoc-id
,[23] On p-adic analytic families of Galois representations, Compositio Math., 59 (1986), 231-264. | Zbl | MR | mathdoc-id
and ,[24] Le prolongement p-adic analytique des fonctions de L de Rankin, I, C.R. Acad. Sc. Paris, 295 (1982), 51-53, II :idem 227-230. | Zbl | MR
,[25] Fonctions L p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. | Zbl
,[26] Formes modulaires et fonctions zêta p-adiques, In "Modular functions of one variable III", Lecture notes in Math. 350 (1973), pp. 191-268. | Zbl | MR
,[27] Introduction to the arithmetic theory of automorphic functions, Tokyo-Princeton, Iwanami Shoten and Princeton Univ. Press, 1971. | Zbl
,[28] On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), 79-98. | Zbl | MR
,[29] On some arithmetic properties of modular forms of one and several variables, Ann. of Math., 102 (1975), 491-515. | Zbl | MR
,[30] The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. | Zbl | MR
,[31] On the periods of modular forms, Math. Ann., 229 (1977), 211-221. | Zbl | MR
,[32] Confluent hypergeometric functions on Tube domains, Math. Ann., 260 (1982), 269-302. | Zbl | MR
,[33] Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. France, 115 (1987), 329-360. | Zbl | MR | mathdoc-id
,[33] Basic number theory, Berlin-Heiderberg-New York, Springer, 1974. | Zbl | MR
,Cité par Sources :