Voir la notice de l'article provenant de la source Numdam
We construct an infinite measure preserving version of Chacon transformation, and prove that it has a property similar to Minimal Self-Joinings in finite measure: its Cartesian powers have as few invariant Radon measures as possible.
Nous construisons une version de la transformation de Chacon en mesure infinie, et prouvons qu’elle satisfait une propriété similaire aux autocouplages minimaux en mesure finie : ses puissances cartésiennes ont aussi peu de mesures de Radon invariantes que possible.
Janvresse, Élise 1 ; Roy, Emmanuel 2 ; de la Rue, Thierry 3
@article{AHL_2019__2__369_0, author = {Janvresse, \'Elise and Roy, Emmanuel and de la Rue, Thierry}, title = {Nearly finite {Chacon} transformation}, journal = {Annales Henri Lebesgue}, pages = {369--414}, publisher = {\'ENS Rennes}, volume = {2}, year = {2019}, doi = {10.5802/ahl.21}, mrnumber = {4015913}, zbl = {07106524}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ahl.21/} }
TY - JOUR AU - Janvresse, Élise AU - Roy, Emmanuel AU - de la Rue, Thierry TI - Nearly finite Chacon transformation JO - Annales Henri Lebesgue PY - 2019 SP - 369 EP - 414 VL - 2 PB - ÉNS Rennes UR - http://geodesic.mathdoc.fr/articles/10.5802/ahl.21/ DO - 10.5802/ahl.21 LA - en ID - AHL_2019__2__369_0 ER -
Janvresse, Élise; Roy, Emmanuel; de la Rue, Thierry. Nearly finite Chacon transformation. Annales Henri Lebesgue, Tome 2 (2019), pp. 369-414. doi : 10.5802/ahl.21. http://geodesic.mathdoc.fr/articles/10.5802/ahl.21/
[Aar97] An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, 1997, xii+284 pages | Zbl | MR
[AFS97] Rank-one weak mixing for nonsingular transformations, Isr. J. Math., Volume 102 (1997), pp. 269-281 | Zbl | MR | DOI
[BSS + 15] Subsequence bounded rational ergodicity of rank-one transformations, Dyn. Syst., Volume 30 (2015) no. 1, pp. 70-84 | Zbl | MR | DOI
[Dan18] Infinite measure preserving transformations with Radon MSJ., Isr. J. Math., Volume 228 (2018) no. 1, pp. 21-51 | DOI | Zbl | MR
[dJRS80] Chacon’s automorphism has minimal self-joinings, J. Anal. Math., Volume 37 (1980), pp. 276-284 | MR | DOI | Zbl
[FS67] Ensembles de Kronecker dans la Théorie ergodique, C. R. Math. Acad. Sci. Paris, Volume 267 (1967), pp. 166-168 | Zbl
[Hal50] Measure Theory, D. Van Nostrand Company, 1950, xi+304 pages | Zbl
[JRdlR17] Poisson suspensions and SuShis, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017) no. 6, pp. 1301-1334 | Zbl | MR | DOI
[JRdlR18] Invariant measures for Cartesian powers of Chacon infinite transformation, Isr. J. Math., Volume 224 (2018), pp. 1-37 | Zbl | MR | DOI
[LPT00] Gaussian automorphisms whose ergodic self-joinings are Gaussian, Fundam. Math., Volume 164 (2000) no. 3, pp. 253-293 | MR | Zbl
[Roy07] Ergodic properties of Poissonian ID processes, Ann. Probab., Volume 35 (2007) no. 2, pp. 551-576 | Zbl | MR
[Rud79] An example of a measure preserving map with minimal self-joinings, and applications, J. Anal. Math., Volume 35 (1979), pp. 97-122 | Zbl | MR | DOI
Cité par Sources :