Voir la notice de l'article provenant de la source Numdam
We show that in large enough rank, the Gromov boundary of the free factor complex is path connected and locally path connected.
Nous montrons que, en rang suffisamment grand, le bord de Gromov du complexe des facteurs libres est connexe par arcs et localement connexe par arcs.
Bestvina, Mladen 1 ; Chaika, Jon 2 ; Hensel, Sebastian 3
@article{AHL_2023__6__1291_0, author = {Bestvina, Mladen and Chaika, Jon and Hensel, Sebastian}, title = {Connectivity of the {Gromov} {Boundary} of the {Free} {Factor} {Complex}}, journal = {Annales Henri Lebesgue}, pages = {1291--1348}, publisher = {\'ENS Rennes}, volume = {6}, year = {2023}, doi = {10.5802/ahl.189}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ahl.189/} }
TY - JOUR AU - Bestvina, Mladen AU - Chaika, Jon AU - Hensel, Sebastian TI - Connectivity of the Gromov Boundary of the Free Factor Complex JO - Annales Henri Lebesgue PY - 2023 SP - 1291 EP - 1348 VL - 6 PB - ÉNS Rennes UR - http://geodesic.mathdoc.fr/articles/10.5802/ahl.189/ DO - 10.5802/ahl.189 LA - en ID - AHL_2023__6__1291_0 ER -
%0 Journal Article %A Bestvina, Mladen %A Chaika, Jon %A Hensel, Sebastian %T Connectivity of the Gromov Boundary of the Free Factor Complex %J Annales Henri Lebesgue %D 2023 %P 1291-1348 %V 6 %I ÉNS Rennes %U http://geodesic.mathdoc.fr/articles/10.5802/ahl.189/ %R 10.5802/ahl.189 %G en %F AHL_2023__6__1291_0
Bestvina, Mladen; Chaika, Jon; Hensel, Sebastian. Connectivity of the Gromov Boundary of the Free Factor Complex. Annales Henri Lebesgue, Tome 6 (2023), pp. 1291-1348. doi: 10.5802/ahl.189
Cité par Sources :