Non-local competition slows down front acceleration during dispersal evolution
[La compétition non-locale réduit l’accélération du front d’invasion en cas d’évolution de la dispersion]
Annales Henri Lebesgue, Tome 5 (2022), pp. 1-71.

Voir la notice de l'article provenant de la source Numdam

We investigate super-linear spreading in a reaction-diffusion model analogous to the Fisher-KPP equation, but in which the population is heterogeneous with respect to the dispersal ability of individuals and the saturation factor is non-local with respect to one variable. It was previously shown that the population expands as 𝒪(t 3/2 ). We identify a constant α * , and show that, in a weak sense, the front is located at α * t 3/2 . Surprisingly, α * is smaller than the prefactor predicted by the linear problem (that is, without saturation) and analogous problem with local saturation. This hindering phenomenon is the consequence of a subtle interplay between the non-local saturation and the non-trivial dynamics of some particular curves that carry the mass to the front. A careful analysis of these trajectories allows us to characterize the value α * . The article is complemented with numerical simulations that illustrate some behavior of the model that is beyond our analysis.

Nous examinons le phénomène de propagation surlinéaire pour un modèle de réaction-diffusion analogue à l’équation de Fisher-KPP, mais pour lequel la population est hétérogène vis-à-vis du taux de dispersion de chaque individu, et de plus, le terme de saturation est non-local par rapport à la variable de dispersion. Il avait été démontré que la population s’étend comme un 𝒪(t 3/2 ). Ici, nous identifions une constante α * telle que le front d’expansion est localisé autour de α * t 3/2 , dans un sens faible. Curieusement, la constante α * est strictement inférieure au préfacteur obtenu à partir du problème linéarisé (en omettant la saturation), ce dernier coïncidant par ailleurs avec celui obtenu à partir du problème avec saturation locale. Ce phénomène de ralentissement est la conséquence d’une interaction subtile entre la saturation non-locale et la dynamique non-triviale de certaines trajectoires qui amènent la masse au front d’invasion. Une analyse très précise de ces courbes particulières nous permet de caractériser algébriquement la valeur de α * . En complément de ce travail, des simulations numériques viennent illustrer le comportement attendu des solutions, au-delà des résultats analytiques.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.117
Classification : 35A18, 35A24, 35A30, 35B40, 35B50, 35C06, 35C07, 35D40, 35F21, 35K15, 35K57, 35Q92, 49L25, 92D15, 92D25, 92D40
Keywords: Reaction-diffusion, Dispersal evolution, Front acceleration, Linear determinacy, Approximation of geometric optics, Lagrangian dynamics, Explicit rate of expansion

Calvez, Vincent 1 ; Henderson, Christopher 2 ; Mirrahimi, Sepideh 3 ; Turanova, Olga 4 ; Dumont, Thierry 5

1 Institut Camille Jordan, UMR 5208 CNRS & Université Claude Bernard Lyon 1, and Equipe-projet Inria Dracula, Lyon (France)
2 Department of Mathematics, University of Arizona, Tucson, AZ 85721 (USA)
3 Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse; CNRS, UPS, F-31062 Toulouse Cedex 9 (France)
4 Michigan State University, East Lansing, MI 48824 (USA)
5 Institut Camille Jordan, UMR 5208 CNRS & Université Claude Bernard Lyon 1, Lyon (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2022__5__1_0,
     author = {Calvez, Vincent and Henderson, Christopher and Mirrahimi, Sepideh and Turanova, Olga and Dumont, Thierry},
     title = {Non-local competition slows down front acceleration during dispersal evolution},
     journal = {Annales Henri Lebesgue},
     pages = {1--71},
     publisher = {\'ENS Rennes},
     volume = {5},
     year = {2022},
     doi = {10.5802/ahl.117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ahl.117/}
}
TY  - JOUR
AU  - Calvez, Vincent
AU  - Henderson, Christopher
AU  - Mirrahimi, Sepideh
AU  - Turanova, Olga
AU  - Dumont, Thierry
TI  - Non-local competition slows down front acceleration during dispersal evolution
JO  - Annales Henri Lebesgue
PY  - 2022
SP  - 1
EP  - 71
VL  - 5
PB  - ÉNS Rennes
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ahl.117/
DO  - 10.5802/ahl.117
LA  - en
ID  - AHL_2022__5__1_0
ER  - 
%0 Journal Article
%A Calvez, Vincent
%A Henderson, Christopher
%A Mirrahimi, Sepideh
%A Turanova, Olga
%A Dumont, Thierry
%T Non-local competition slows down front acceleration during dispersal evolution
%J Annales Henri Lebesgue
%D 2022
%P 1-71
%V 5
%I ÉNS Rennes
%U http://geodesic.mathdoc.fr/articles/10.5802/ahl.117/
%R 10.5802/ahl.117
%G en
%F AHL_2022__5__1_0
Calvez, Vincent; Henderson, Christopher; Mirrahimi, Sepideh; Turanova, Olga; Dumont, Thierry. Non-local competition slows down front acceleration during dispersal evolution. Annales Henri Lebesgue, Tome 5 (2022), pp. 1-71. doi : 10.5802/ahl.117. http://geodesic.mathdoc.fr/articles/10.5802/ahl.117/

[ABR17] Alfaro, Matthieu; Berestycki, Henri; Raoul, Gaël The Effect of Climate Shift on a Species Submitted to Dispersion, Evolution, Growth, and Nonlocal Competition, SIAM J. Math. Anal., Volume 49 (2017) no. 1, pp. 562-596 | MR | DOI | Zbl

[ACR13] Alfaro, Matthieu; Coville, Jérôme; Raoul, Gaël Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait, Commun. Partial Differ. Equations, Volume 38 (2013) no. 12, pp. 2126-2154 | MR | Zbl | DOI

[AS64] Abramowitz, Milton; Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Washington: U.S. Department of Commerce, 1964 | Zbl

[AW78] Aronson, Donald G.; Weinberger, Hans F. Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978) no. 1, pp. 33-76 | MR | Zbl | DOI

[BA88] Ben Arous, Gérard Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus, Ann. Sci. Éc. Norm. Supér., Volume 21 (1988) no. 3, pp. 307-331 | mathdoc-id | Zbl | DOI

[BC14] Bouin, Emeric; Calvez, Vincent Travelling waves for the cane toads equation with bounded traits, Nonlinearity, Volume 27 (2014) no. 9, pp. 2233-2253 | MR | Zbl | DOI

[BCGN16] Bouin, Emeric; Calvez, Vincent; Grenier, Emmanuel; Nadin, Grégoire Large deviations for velocity-jump processes and non-local Hamilton-Jacobi equations (2016) (http://arxiv.org/abs/1607.03676)

[BCHK18] Bouin, Emeric; Chan, Matthew H.; Henderson, Christopher; Kim, Peter S. Influence of a mortality trade-off on the spreading rate of cane toads fronts, Commun. Partial Differ. Equations, Volume 43 (2018) no. 11, pp. 1627-1671 | MR | Zbl | DOI

[BCM + 12] Bouin, Emeric; Calvez, Vincent; Meunier, Nicolas; Mirrahimi, Sepideh; Perthame, Benoît; Raoul, Gaël; Voituriez, Raphaël Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 15-16, pp. 761-766 | MR | Zbl | DOI

[BCMV12] Bénichou, Olivier; Calvez, Vincent; Meunier, Nicolas; Voituriez, Raphaël Front acceleration by dynamic selection in Fisher population waves, Phys. Rev. E, Volume 86 (2012) no. 4, 041908 | DOI

[BCN15] Bouin, Emeric; Calvez, Vincent; Nadin, Grégoire Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Arch. Ration. Mech. Anal., Volume 217 (2015) no. 2, pp. 571-617 | MR | Zbl | DOI

[BGHP18] Bouin, Emeric; Garnier, Jimmy; Henderson, Christopher; Patout, Florian Thin Front Limit of an Integro-differential Fisher-KPP Equation with Fat-Tailed Kernels, SIAM J. Math. Anal., Volume 50 (2018) no. 3, pp. 3365-3394 | MR | Zbl | DOI

[BH02] Berestycki, Henri; Hamel, François Front propagation in periodic excitable media, Commun. Pure Appl. Math., Volume 55 (2002) no. 8, pp. 949-1032 | MR | Zbl | DOI

[BHN05] Berestycki, Henri; Hamel, François; Nadirashvili, Nikolai The speed of propagation for KPP type problems. I: Periodic framework, J. Eur. Math. Soc., Volume 7 (2005) no. 2, pp. 173-213 | MR | Zbl | DOI

[BHR17a] Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya The Bramson logarithmic delay in the cane toads equations, Q. Appl. Math., Volume 75 (2017) no. 4, pp. 599-634 | MR | Zbl | DOI

[BHR17b] Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya Super-linear spreading in local and non-local cane toads equations, J. Math. Pures Appl., Volume 108 (2017) no. 5, pp. 724-750 | MR | Zbl | DOI

[BJS16] Berestycki, Henri; Jin, Tianling; Silvestre, Luis Propagation in a non local reaction diffusion equation with spatial and genetic trait structure, Nonlinearity, Volume 29 (2016) no. 4, pp. 1434-1466 | MR | DOI | Zbl

[BM15] Bouin, Emeric; Mirrahimi, Sepideh A Hamilton–Jacobi approach for a model of population structured by space and trait, Commun. Math. Sci., Volume 13 (2015) no. 6, pp. 1431-1452 | MR | Zbl | DOI

[BMR15] Berestycki, Nathanaël; Mouhot, Clément; Raoul, Gaël Existence of self-accelerating fronts for a non-local reaction-diffusion equations (2015) (http://arxiv.org/abs/1512.00903)

[BNPR09] Berestycki, Henri; Nadin, Grégoire; Perthame, Benoît; Ryzhik, Lenya The non-local Fisher–KPP equation: travelling waves and steady states, Nonlinearity, Volume 22 (2009) no. 12, pp. 2813-2844 | MR | Zbl | DOI

[BP87] Barles, Guy; Perthame, Benoît Discontinuous solutions of deterministic optimal stopping time problems, RAIRO, Modélisation Math. Anal. Numér., Volume 21 (1987) no. 4, pp. 557-579 | mathdoc-id | MR | Zbl | DOI

[Bra83] Bramson, Maury Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs of the American Mathematical Society, 44, American Mathematical Society, 1983 | Zbl | DOI

[Bre11] Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011 | DOI | Zbl

[CBBB12] Clobert, Jean; Baguette, Michel; Benton, Tim G.; Bullock, James M. Dispersal ecology and evolution, Oxford University Press, 2012 | DOI

[CHS12] Cuesta, Carlota M.; Hittmeir, Sabine; Schmeiser, Christian Traveling Waves of a Kinetic Transport Model for the KPP-Fisher Equation, SIAM J. Math. Anal., Volume 44 (2012) no. 6, pp. 4128-4146 | MR | Zbl | DOI

[CLS89] Crandall, Michael G.; Lions, Pierre-Louis; Souganidis, Panagiotis E. Maximal solutions and universal bounds for some partial differential equations of evolution, Arch. Ration. Mech. Anal., Volume 105 (1989) no. 2, pp. 163-190 | Zbl | MR | DOI

[CM07] Champagnat, Nicolas; Méléard, Sylvie Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., Volume 55 (2007) no. 2, pp. 147-188 | MR | Zbl | DOI

[CR12] Coulon, Anne-Charline; Roquejoffre, Jean-Michel Transition Between Linear and Exponential Propagation in Fisher-KPP Type Reaction-Diffusion Equations, Commun. Partial Differ. Equations, Volume 37 (2012) no. 10-12, pp. 2029-2049 | MR | Zbl | DOI

[CR13] Cabré, Xavier; Roquejoffre, Jean-Michel The Influence of Fractional Diffusion in Fisher-KPP Equations, Commun. Math. Phys., Volume 320 (2013) no. 3, pp. 679-722 | MR | Zbl | DOI

[Cro03] Crooks, Elaine C. M. Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Adv. Differ. Equ., Volume 8 (2003) no. 3, pp. 279-314 | Zbl | MR

[DBM + 12] Duarte, Max; Bonaventura, Zdeněk; Massot, Marc; Bourdon, Anne; Descombes, Stéphane; Dumont, Thierry A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations, J. Comput. Phys., Volume 231 (2012) no. 3, pp. 1002-1019 | MR | Zbl | DOI

[Des00] Descombes, Stéphane Convergence of a splitting method of high order for reaction-diffusion systems, Math. Comput., Volume 70 (2000) no. 236, pp. 1481-1501 | Zbl | MR | DOI

[ES89] Evans, Lawrence C.; Souganidis, Panagiotis E. A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., Volume 38 (1989) no. 1, pp. 141-172 | MR | Zbl | DOI

[Fis37] Fisher, Ronald A. The Wave of Advance of Advantageous Genes, Ann. Eugenics, Volume 7 (1937) no. 4, pp. 355-369 | Zbl | DOI

[Fre85a] Freidlin, Mark I. Functional integration and partial differential equations, Annals of Mathematics Studies, 109, Princeton University Press, 1985 | Zbl | DOI

[Fre85b] Freidlin, Mark I. Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab., Volume 13 (1985) no. 3, pp. 639-675 | MR | Zbl

[Fre86] Freidlin, Mark I. Geometric Optics Approach to Reaction-Diffusion Equations, SIAM J. Appl. Math., Volume 46 (1986) no. 2, pp. 222-232 | MR | Zbl | DOI

[Gar11] Garnier, Jimmy Accelerating Solutions in Integro-Differential Equations, SIAM J. Math. Anal., Volume 43 (2011) no. 4, pp. 1955-1974 | MR | Zbl | DOI

[Gir18a] Girardin, Léo Non-cooperative Fisher–KPP systems: Asymptotic behavior of traveling waves, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 06, pp. 1067-1104 | MR | Zbl | DOI

[Gir18b] Girardin, Léo Non-cooperative Fisher–KPP systems: traveling waves and long-time behavior, Nonlinearity, Volume 31 (2018) no. 1, p. 108 | MR | Zbl | DOI

[HNRR13] Hamel, François; Nolen, James; Roquejoffre, Jean-Michel; Ryzhik, Lenya A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, Volume 8 (2013) no. 1, pp. 275-289 | MR | Zbl | DOI

[HNW93] Hairer, Ernst; Nørsett, Syvert P.; Wanner, Gerhard Solving ordinary differential equations I: Nonstiff problems, Springer Series in Computational Mathematics, 8, Springer, 1993 (Vol. 2 by E. Hairer, G. Wanner) | Zbl

[HPS18] Henderson, Christopher; Perthame, Benoît; Souganidis, Panagiotis E. Super-linear propagation for a general, local cane toads model, Interfaces Free Bound., Volume 20 (2018) no. 4, pp. 483-509 | MR | Zbl | DOI

[HR75] Hadeler, Karl P.; Rothe, Franz Travelling fronts in nonlinear diffusion equations, J. Math. Biol., Volume 2 (1975) no. 3, pp. 251-263 | MR | Zbl | DOI

[HR14] Hamel, François; Ryzhik, Lenya On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds, Nonlinearity, Volume 27 (2014) no. 11, pp. 2735-2753 | MR | DOI | Zbl

[HW10] Hairer, Ernst; Wanner, Gerhard Solving Ordinary Differential Equations II: Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 14, Springer, 2010 | DOI

[KPP37] Kolmogorov, Andreï N.; Petrovsky, Ivan G.; Piskunov, Nikolai S. Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, Volume 1 (1937) no. 6, pp. 1-25 | Zbl

[Lio82] Lions, Pierre-Louis Generalized solutions of Hamilton–Jacobi equations, Research Notes in Mathematics, 69, Pitman Advanced Publishing Program, 1982 | Zbl

[LLW02] Lewis, Mark A.; Li, Bingtuan; Weinberger, Hans F. Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., Volume 45 (2002) no. 3, pp. 219-233 | MR | Zbl | DOI

[LMN04] Lucia, Marcello; Muratov, Cyrill B.; Novaga, Matteo Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Commun. Pure Appl. Math., Volume 57 (2004) no. 5, pp. 616-636 | MR | Zbl | DOI

[LWL05] Li, Bingtuan; Weinberger, Hans F.; Lewis, Mark A. Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., Volume 196 (2005) no. 1, pp. 82-98 | MR | Zbl | DOI

[Léa87a] Léandre, Rémi Majoration en temps petit de la densité d’une diffusion dégénérée, Probab. Theory Relat. Fields, Volume 74 (1987) no. 2, pp. 289-294 | Zbl | DOI

[Léa87b] Léandre, Rémi Minoration en temps petit de la densité d’une diffusion dégénérée, J. Funct. Anal., Volume 74 (1987) no. 2, pp. 399-414 | Zbl | DOI

[Mir20] Mirrahimi, Sepideh Singular limits for models of selection and mutations with heavy-tailed mutation distribution, J. Math. Pures Appl., Volume 134 (2020), pp. 179-203 | MR | Zbl | DOI

[MM15] Méléard, Sylvie; Mirrahimi, Sepideh Singular Limits for Reaction-Diffusion Equations with Fractional Laplacian and Local or Nonlocal Nonlinearity, Commun. Partial Differ. Equations, Volume 40 (2015) no. 5, pp. 957-993 | MR | Zbl | DOI

[MS94] Majda, Andrew J.; Souganidis, Panagiotis E. Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity, Volume 7 (1994) no. 1, pp. 1-30 | MR | DOI | Zbl

[MW01] MacArthur, Robert H.; Wilson, Edward O. The theory of island biogeography, Princeton Landmarks in Biology, Princeton University Press, 2001 | DOI

[NR17] Nadin, Grégoire; Rossi, Luca Generalized transition fronts for one-dimensional almost periodic Fisher-KPP equations, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 3, pp. 1239-1267 | MR | Zbl | DOI

[PBWS06] Phillips, Benjamin L.; Brown, Gregory P.; Webb, Jonathan K.; Shine, Richard Invasion and the evolution of speed in toads, Nature, Volume 439 (2006) no. 7078, p. 803-803 | DOI

[PDA11] Prévost, Céline; Desvillettes, Laurent; Arnold, Anton Existence of nontrivial steady states for populations structured with respect to space and a continuous trait, Commun. Pure Appl. Anal., Volume 11 (2011) no. 1, pp. 83-96 | MR | Zbl | DOI

[Pen18] Penington, Sarah The spreading speed of solutions of the non-local Fisher–KPP equation, J. Funct. Anal., Volume 275 (2018) no. 12, pp. 3259-3302 | MR | Zbl | DOI

[Ron07] Ronce, Ophélie How Does It Feel to Be Like a Rolling Stone? Ten Questions About Dispersal Evolution, Annu. Rev. Ecol. Evol. Syst., Volume 38 (2007) no. 1, pp. 231-253 | DOI

[SBP11] Shine, Richard; Brown, Gregory P.; Phillips, Benjamin L. An evolutionary process that assembles phenotypes through space rather than through time, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 14, pp. 5708-5711 | DOI

[Str68] Strang, Gilbert On the Construction and Comparison of Difference Schemes, SIAM J. Numer. Anal., Volume 5 (1968) no. 3, pp. 506-517 | MR | Zbl | DOI

[TBW + 01] Thomas, Chris D.; Bodsworth, Edward J.; Wilson, Robert J.; Simmons, Adam D.; Davies, Zoe G.; Musche, Martin; Conradt, Larissa Ecological and evolutionary processes at expanding range margins, Nature, Volume 411 (2001) no. 6837, pp. 577-581 | DOI

[TD02] Travis, Justin M. J.; Dytham, Calvin Dispersal evolution during invasions, Evolutionary Ecology Research, Volume 4 (2002) no. 8, pp. 1119-1129

[TMBD09] Travis, Justin M. J.; Mustin, Karen; Benton, Tim G.; Dytham, Calvin Accelerating invasion rates result from the evolution of density-dependent dispersal, J. Theor. Biol., Volume 259 (2009) no. 1, pp. 151-158 | MR | Zbl | DOI

[Tur15] Turanova, Olga On a model of a population with variable motility, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 10, pp. 1961-2014 | MR | DOI | Zbl

[UPSS08] Urban, Mark C.; Phillips, Ben L.; Skelly, David K.; Shine, Richard A Toad More Traveled: The Heterogeneous Invasion Dynamics of Cane Toads in Australia, The American Naturalist, Volume 171 (2008) no. 3, p. E134-E148 | DOI

[Vil02] Villani, Cédric A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, Elsevier, 2002, pp. 71-305 | Zbl | DOI

[Wei12] Weinberger, Hans F. On sufficient conditions for a linearly determinate spreading speed, Discrete Contin. Dyn. Syst., Volume 17 (2012) no. 6, pp. 2267-2280 | MR | Zbl | DOI

[WLL02] Weinberger, Hans F.; Lewis, Mark A.; Li, Bingtuan Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., Volume 45 (2002) no. 3, pp. 183-218 | MR | Zbl | DOI

Cité par Sources :