Voir la notice de l'article provenant de la source Numdam
Let denote the hyperbolic four-space. Given a bordered Riemann surface, , we prove that every smooth conformal superminimal immersion can be approximated uniformly on compacts in by proper conformal superminimal immersions . In particular, contains properly immersed conformal superminimal surfaces normalised by any given open Riemann surface of finite topological type without punctures. The proof uses the analysis of holomorphic Legendrian curves in the twistor space of .
Forstnerič, Franc 1
@article{AFST_2023_6_32_1_145_0, author = {Forstneri\v{c}, Franc}, title = {Proper superminimal surfaces of given conformal types in the hyperbolic four-space}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {145--172}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1732}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/afst.1732/} }
TY - JOUR AU - Forstnerič, Franc TI - Proper superminimal surfaces of given conformal types in the hyperbolic four-space JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 145 EP - 172 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - http://geodesic.mathdoc.fr/articles/10.5802/afst.1732/ DO - 10.5802/afst.1732 LA - en ID - AFST_2023_6_32_1_145_0 ER -
%0 Journal Article %A Forstnerič, Franc %T Proper superminimal surfaces of given conformal types in the hyperbolic four-space %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 145-172 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U http://geodesic.mathdoc.fr/articles/10.5802/afst.1732/ %R 10.5802/afst.1732 %G en %F AFST_2023_6_32_1_145_0
Forstnerič, Franc. Proper superminimal surfaces of given conformal types in the hyperbolic four-space. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 145-172. doi: 10.5802/afst.1732
Cité par Sources :