Voir la notice de l'article provenant de la source Numdam
In earlier work, Helen Wong and the author discovered certain “miraculous cancellations” for the quantum trace map connecting the Kauffman bracket skein algebra of a surface to its quantum Teichmüller space, occurring when the quantum parameter is a root of unity. The current paper is devoted to giving a more representation theoretic interpretation of this phenomenon, in terms of the quantum group and its dual Hopf algebra .
Des travaux précédents de Helen Wong et de l’auteur ont mis en évidence, quand le paramètre quantique est une racine de l’unité, des « annulations miraculeuses » pour l’application de trace quantique qui relie l’algèbre d’écheveaux du crochet de Kauffman à l’espace de Teichmüller quantique d’une surface. L’article ci-dessous fournit une interprétation plus conceptuelle de ce phénomène, en termes de représentations du groupe quantique et de son algèbre de Hopf duale .
Bonahon, Francis 1
@article{AFST_2019_6_28_3_523_0, author = {Bonahon, Francis}, title = {Miraculous cancellations for quantum $\protect \mathrm{SL}_2$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {523--557}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {3}, year = {2019}, doi = {10.5802/afst.1608}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/} }
TY - JOUR AU - Bonahon, Francis TI - Miraculous cancellations for quantum $\protect \mathrm{SL}_2$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 523 EP - 557 VL - 28 IS - 3 PB - Université Paul Sabatier, Toulouse UR - http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/ DO - 10.5802/afst.1608 LA - en ID - AFST_2019_6_28_3_523_0 ER -
%0 Journal Article %A Bonahon, Francis %T Miraculous cancellations for quantum $\protect \mathrm{SL}_2$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 523-557 %V 28 %N 3 %I Université Paul Sabatier, Toulouse %U http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/ %R 10.5802/afst.1608 %G en %F AFST_2019_6_28_3_523_0
Bonahon, Francis. Miraculous cancellations for quantum $\protect \mathrm{SL}_2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 523-557. doi : 10.5802/afst.1608. http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/
[1] Scindements de Heegaard des espaces lenticulaires, C. R. Math. Acad. Sci. Paris, Volume 294 (1982) no. 17, pp. 585-587 | Zbl | MR
[2] Scindements de Heegaard des espaces lenticulaires, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 3, pp. 451-466 | Zbl | DOI | MR
[3] Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., Volume 20 (1988) no. 3, pp. 255-261 | Zbl | DOI | MR
[4] Laminations mesurées de plissage des variétés hyperboliques de dimension , Ann. Math., Volume 160 (2004) no. 3, pp. 1013-1055 | Zbl | MR | DOI
[5] Quantum traces for representations of surface groups in , Geom. Topol., Volume 15 (2011) no. 3, pp. 1569-1615 | Zbl | MR | DOI
[6] Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., Volume 204 (2016) no. 1, pp. 195-243 | Zbl | DOI | MR
[7] Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR, Volume 283 (1985) no. 5, pp. 1060-1064 | MR
[8] Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, 1986), American Mathematical Society (1987), pp. 798-820 | MR
[9] The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 38, pp. 13928-13931 | Zbl | MR | DOI
[10] A -difference analogue of and the Yang-Baxter equation, Lett. Math. Phys., Volume 10 (1985) no. 1, pp. 63-69 | Zbl | DOI | MR
[11] Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995, xii+531 pages | Zbl | MR | DOI
[12] Representations of the algebra -orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) (Advanced Series in Mathematical Physics), Volume 7, World Scientific, 1989, pp. 285-339 | MR
[13] The Clebsch–Gordan coefficients for the quantum group and -Hahn polynomials, Indag. Math., Volume 51 (1989) no. 4, pp. 443-456 | Zbl | DOI | MR
[14] Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Volume 37 (1987) no. 4, pp. 191-205 | Zbl | DOI | MR
[15] Quantum groups and noncommutative geometry, Université de Montréal, 1988, vi+91 pages | Zbl | MR
[16] Quantization of Lie groups and Lie algebras, Algebra Anal., Volume 1 (1989) no. 1, pp. 178-206 | MR
[17] Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990) no. 1, pp. 1-26 | Zbl | DOI | MR
[18] Invariants of -manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | Zbl | DOI | MR
[19] Hopf algebra techniques applied to the quantum group , Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemporary Mathematics), Volume 134, American Mathematical Society, 1992, pp. 309-323 | Zbl | DOI | MR
[20] Some topics on , J. Algebra, Volume 147 (1992) no. 2, pp. 379-410 | Zbl | DOI | MR
[21] -analogues of Clebsch-Gordan coefficients, and the algebra of functions on the quantum group , Dokl. Akad. Nauk SSSR, Volume 306 (1989) no. 2, pp. 269-271 | Zbl | MR
[22] Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | Zbl | DOI | MR
Cité par Sources :