Miraculous cancellations for quantum SL 2
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 523-557.

Voir la notice de l'article provenant de la source Numdam

In earlier work, Helen Wong and the author discovered certain “miraculous cancellations” for the quantum trace map connecting the Kauffman bracket skein algebra of a surface to its quantum Teichmüller space, occurring when the quantum parameter q=e 2πi is a root of unity. The current paper is devoted to giving a more representation theoretic interpretation of this phenomenon, in terms of the quantum group U q (𝔰𝔩 2 ) and its dual Hopf algebra SL 2 q .

Des travaux précédents de Helen Wong et de l’auteur ont mis en évidence, quand le paramètre quantique q=e 2πi est une racine de l’unité, des « annulations miraculeuses » pour l’application de trace quantique qui relie l’algèbre d’écheveaux du crochet de Kauffman à l’espace de Teichmüller quantique d’une surface. L’article ci-dessous fournit une interprétation plus conceptuelle de ce phénomène, en termes de représentations du groupe quantique U q (𝔰𝔩 2 ) et de son algèbre de Hopf duale SL 2 q .

Publié le :
DOI : 10.5802/afst.1608

Bonahon, Francis 1

1 Department of Mathematics, University of Southern California, Los Angeles CA 90089-2532, U.S.A.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2019_6_28_3_523_0,
     author = {Bonahon, Francis},
     title = {Miraculous cancellations for quantum $\protect \mathrm{SL}_2$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {523--557},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {3},
     year = {2019},
     doi = {10.5802/afst.1608},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/}
}
TY  - JOUR
AU  - Bonahon, Francis
TI  - Miraculous cancellations for quantum $\protect \mathrm{SL}_2$
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 523
EP  - 557
VL  - 28
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/
DO  - 10.5802/afst.1608
LA  - en
ID  - AFST_2019_6_28_3_523_0
ER  - 
%0 Journal Article
%A Bonahon, Francis
%T Miraculous cancellations for quantum $\protect \mathrm{SL}_2$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 523-557
%V 28
%N 3
%I Université Paul Sabatier, Toulouse
%U http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/
%R 10.5802/afst.1608
%G en
%F AFST_2019_6_28_3_523_0
Bonahon, Francis. Miraculous cancellations for quantum $\protect \mathrm{SL}_2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 523-557. doi : 10.5802/afst.1608. http://geodesic.mathdoc.fr/articles/10.5802/afst.1608/

[1] Bonahon, Francis; Otal, Jean-Pierre Scindements de Heegaard des espaces lenticulaires, C. R. Math. Acad. Sci. Paris, Volume 294 (1982) no. 17, pp. 585-587 | Zbl | MR

[2] Bonahon, Francis; Otal, Jean-Pierre Scindements de Heegaard des espaces lenticulaires, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 3, pp. 451-466 | Zbl | DOI | MR

[3] Bonahon, Francis; Otal, Jean-Pierre Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., Volume 20 (1988) no. 3, pp. 255-261 | Zbl | DOI | MR

[4] Bonahon, Francis; Otal, Jean-Pierre Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Ann. Math., Volume 160 (2004) no. 3, pp. 1013-1055 | Zbl | MR | DOI

[5] Bonahon, Francis; Wong, Helen Quantum traces for representations of surface groups in SL 2 (), Geom. Topol., Volume 15 (2011) no. 3, pp. 1569-1615 | Zbl | MR | DOI

[6] Bonahon, Francis; Wong, Helen Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., Volume 204 (2016) no. 1, pp. 195-243 | Zbl | DOI | MR

[7] Drinfeld, Vladimir G. Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR, Volume 283 (1985) no. 5, pp. 1060-1064 | MR

[8] Drinfeld, Vladimir G. Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, 1986), American Mathematical Society (1987), pp. 798-820 | MR

[9] Garoufalidis, Stavros; Lê, Thang T. Q.; Zeilberger, Doron The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 38, pp. 13928-13931 | Zbl | MR | DOI

[10] Jimbo, Michio A q-difference analogue of U(𝔤) and the Yang-Baxter equation, Lett. Math. Phys., Volume 10 (1985) no. 1, pp. 63-69 | Zbl | DOI | MR

[11] Kassel, Christian Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995, xii+531 pages | Zbl | MR | DOI

[12] Kirillov, Anatoliĭ N.; Reshetikhin, Nicolai Yu. Representations of the algebra U q ( sl (2)),q-orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) (Advanced Series in Mathematical Physics), Volume 7, World Scientific, 1989, pp. 285-339 | MR

[13] Koelink, H. T.; Koornwinder, Tom H. The Clebsch–Gordan coefficients for the quantum group S μ U(2) and q-Hahn polynomials, Indag. Math., Volume 51 (1989) no. 4, pp. 443-456 | Zbl | DOI | MR

[14] Manin, Yuri I. Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Volume 37 (1987) no. 4, pp. 191-205 | Zbl | DOI | MR

[15] Manin, Yuri I. Quantum groups and noncommutative geometry, Université de Montréal, 1988, vi+91 pages | Zbl | MR

[16] Reshetikhin, Nicolai Yu.; Takhtadzhyan, Leon A.; Faddeev, Lyudvig D. Quantization of Lie groups and Lie algebras, Algebra Anal., Volume 1 (1989) no. 1, pp. 178-206 | MR

[17] Reshetikhin, Nicolai Yu.; Turaev, Vladimir G. Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990) no. 1, pp. 1-26 | Zbl | DOI | MR

[18] Reshetikhin, Nicolai Yu.; Turaev, Vladimir G. Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | Zbl | DOI | MR

[19] Takeuchi, Mitsuhiro Hopf algebra techniques applied to the quantum group U q (𝔰l(2)), Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemporary Mathematics), Volume 134, American Mathematical Society, 1992, pp. 309-323 | Zbl | DOI | MR

[20] Takeuchi, Mitsuhiro Some topics on GL q (n), J. Algebra, Volume 147 (1992) no. 2, pp. 379-410 | Zbl | DOI | MR

[21] Vaksman, Leonid L. q-analogues of Clebsch-Gordan coefficients, and the algebra of functions on the quantum group SU(2), Dokl. Akad. Nauk SSSR, Volume 306 (1989) no. 2, pp. 269-271 | Zbl | MR

[22] Witten, Edward Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | Zbl | DOI | MR

Cité par Sources :