Questions about Polynomial Matings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial à l’occasion du “Workshop on polynomial matings” 8-11 juin 2011, Toulouse, Tome 21 (2012) no. S5, pp. 1149-1176.

Voir la notice de l'article provenant de la source Numdam

We survey known results about polynomial mating, and pose some open problems.

Nous survolons des résultats connus sur l’accouplement de polynômes et posons quelques problèmes ouverts.

DOI : 10.5802/afst.1365

Buff, Xavier 1 ; Epstein, Adam L. 2 ; Koch, Sarah 3 ; Meyer, Daniel 4 ; Pilgrim, Kevin 4 ; Rees, Mary 5 ; Lei, Tan 6

1 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
2 Mathematics institute, University of Warwick, Coventry CV4 7AL, United Kingdom
3 Department of Mathematics, Science Center, 1 Oxford Street, Harvard University, Cambridge MA 02138, United States
4 Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
5 Department of Mathematical Sciences, University of Liverpool, Mathematics Building  Peach St., Liverpool L69 7ZL U.K.
6 LUNAM Université, Université d’Angers, LAREMA – Laboratoire Angevin de Recherche en Mathématiques, 2 bd Lavoisier, 49045 Angers, cedex, France
@article{AFST_2012_6_21_S5_1149_0,
     author = {Buff, Xavier and Epstein, Adam L. and Koch, Sarah and Meyer, Daniel and Pilgrim, Kevin and Rees, Mary and Lei, Tan},
     title = {Questions about {Polynomial} {Matings}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1149--1176},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     doi = {10.5802/afst.1365},
     zbl = {06167104},
     mrnumber = {3088270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/afst.1365/}
}
TY  - JOUR
AU  - Buff, Xavier
AU  - Epstein, Adam L.
AU  - Koch, Sarah
AU  - Meyer, Daniel
AU  - Pilgrim, Kevin
AU  - Rees, Mary
AU  - Lei, Tan
TI  - Questions about Polynomial Matings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
SP  - 1149
EP  - 1176
VL  - 21
IS  - S5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - http://geodesic.mathdoc.fr/articles/10.5802/afst.1365/
DO  - 10.5802/afst.1365
LA  - en
ID  - AFST_2012_6_21_S5_1149_0
ER  - 
%0 Journal Article
%A Buff, Xavier
%A Epstein, Adam L.
%A Koch, Sarah
%A Meyer, Daniel
%A Pilgrim, Kevin
%A Rees, Mary
%A Lei, Tan
%T Questions about Polynomial Matings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2012
%P 1149-1176
%V 21
%N S5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U http://geodesic.mathdoc.fr/articles/10.5802/afst.1365/
%R 10.5802/afst.1365
%G en
%F AFST_2012_6_21_S5_1149_0
Buff, Xavier; Epstein, Adam L.; Koch, Sarah; Meyer, Daniel; Pilgrim, Kevin; Rees, Mary; Lei, Tan. Questions about Polynomial Matings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial à l’occasion du “Workshop on polynomial matings” 8-11 juin 2011, Toulouse, Tome 21 (2012) no. S5, pp. 1149-1176. doi : 10.5802/afst.1365. http://geodesic.mathdoc.fr/articles/10.5802/afst.1365/

[1] Aspenberg (M.) & Yampolsky (M.).— Mating non-renormalizable quadratic polynomials, Commun. Math. Phys. 287, p. 1-40 (2009). | Zbl | MR

[2] Brock (J.), Canary (R.), and Minsky (Y.).— The classification of Kleinian surface groups II: the ending lamination conjecture, To appear, Annals of Mathematics. | MR | Zbl

[3] Buff (X.), Epstein (A.L.) & Koch (S.).— Twisted matings and equipotential gluing, in this volume.

[4] Blé (G.) & Valdez (R.).— Mating a Siegel disk with the Julia set of a real quadratic polynomial, Conform. Geom. Dyn. 10, p. 257-284 (electronic) (2006). | Zbl | MR

[5] Bers (L.).— Simultaneous uniformization, Bull. Amer. Math. Soc. 66, p. 94-97 (1960). | Zbl | MR

[6] Bullett (S.).— Matings in holomorphic dynamics, in Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser. 368, p. 88-119. Cambridge Univ. Press, Cambridge (2010). | Zbl | MR

[7] Cannon (J.) and Thurston (W.).— Group invariant Peano curves, Geometry and Topology 11, p. 1315-1355 (2007). | Zbl | MR

[8] Chéritat (A.).— Tan Lei and Shishikura’s example of non-mateable degree 3 polynomials without a Levy cycle, in this volume.

[9] Douady (A.) & Hubbard (J.H.).— A Proof of Thurston’s characterization of rational functions, Acta. Math. 171, p. 263-297 (1993). | Zbl | MR

[10] Dudko (D.).— Matings with laminations, arXiv:1112.4780

[11] Epstein (A.).— Quadratic mating discontinuity, manuscript (2012).

[12] Exall (F.).— Rational maps represented by both rabbit and aeroplane matings, PhD thesis, University of Liverpool (2011).

[13] Hruska Boyd (S.).— The Medusa algorithm for polynomial matings, arXiv:1102.5047.

[14] Hubbard (J.).— Matings and the other side of the dictionary, in this volume.

[15] Hubbard (J.).— Preface, in The Mandelbrot set, Theme and Variations, London Math. Soc. Lecture Note Series 274, p. xiii-xx. Cambridge University Press (2000). | Zbl | MR

[16] Haïssinsky (P.) & Tan (L.).— Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math. 181, p. 143-188. | Zbl | MR

[17] Kameyama (A.).— On Julia sets of postcritically finite branched coverings. II. S1-parametrization of Julia sets. J. Math. Soc. Japan 55, p. 455-468 (2003). | Zbl | MR

[18] Kiwi (J.) & Rees (M.).— Counting hyperbolic components, submitted to the London Mathematical Society.

[19] Luo (J.).— Combinatorics and holomorphic dynamics: Captures, matings, Newton’s method, Ph.D. Thesis, Cornell University (1995). | MR

[20] Minsky (Y.).— On Thurston’s ending lamination conjecture, in Low-dimensional topology (Knoxville, TN, 1994), Conf. Proc. Lecture Notes Geom. Topology, III, p. 109-122. Int. Press, Cambridge, MA (1994). | Zbl | MR

[21] Mashanova (I.) & Timorin (V.).— Captures, matings, and regulings, arxiv:1111.5696.

[24] Meyer (D.).— Expanding Thurston maps as quotients, . | arXiv

[25] Meyer (D.).— Invariant Peano curves of expanding Thurston maps, to appear, Acta. Math., . | arXiv

[26] Meyer (D.).— Unmating of rational maps, sufficient criteria and examples, arXiv:1110.6784, (2011), to appear in the Proc. to Milnor’s 80th birthday.

[27] Meyer (D.) & Petersen (C.).— On the notions of matings, in this volume.

[28] Milnor (J.).— Pasting together Julia sets; a worked out example of mating, Experimental Math 13 p. 55-92 (2004). | Zbl | MR

[29] Milnor (J.) and Tan (L.).— Remarks on quadratic rational maps (with an appendix by Tan Lei), Experimental Math 2, p. 37-83 (1993). | Zbl | MR

[30] Mj (M.).— Cannon-Thurston maps for surface groups II: split geometry and the Minsky model, http://lists.rkmvu.ac.in/intro/academics/matsc_website/mahan/split.pdf, preprint; accessed June 11 (2012).

[31] Mj (M.).— Cannon-Thurston maps for surface groups, , preprint. | arXiv

[32] Petersen (C.).— No elliptic limits for quadratic rational maps, Ergodic Theory Dynam. Systems 19, p. 127-141 (1999). | Zbl | MR

[33] Rees (M.).— Realization of matings of polynomials of rational maps of degree two, Manuscript (1986).

[34] Rees (M.).— Components of degree two hyperbolic rational maps, Invent. Math., 100, p. 357-382 (1990). | Zbl | MR

[35] Rees (M.).— A partial description of parameter space of rational maps of degree two: part I, Acta Math., 168 p. 11-87 (1992). | Zbl | MR

[36] Rees (M.).— Multiple equivalent matings with the aeroplane polynomial, Erg. Th. and Dyn. Sys., 30, p. 1239-1257 (2010). | MR

[37] Sharland (T.).— Rational Maps with Clustering and the Mating of Polynomials, PhD thesis, Warwick (2010).

[38] Sharland (T.).— Constructing rational maps with cluster points using the mating operation, Preprint (2011).

[39] Shishikura (M.).— On a theorem of M. Rees for matings of polynomials, London Math. Soc. Lecture Note Ser., 274. CMP 2000:14. | Zbl | MR

[40] Shishikura (M.) & Tan (L.).— A family of cubic rational maps and matings of cubic polynomials, Experiment. Math. 9, p. 29-53 (2000). | Zbl | MR

[41] Tan (L.).— Branched coverings and cubic Newton maps, Fund. Math. 154, p. 207-260 (1997). | Zbl | MR

[42] Tan (L.).— Matings of quadratic polynomials, Erg. Th. and Dyn. Sys. 12, p. 589-620 (1992). | Zbl | MR

[43] Tan (L.).— On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. 35, p. 353-370 (2002). | Zbl | MR | mathdoc-id

[44] Wittner (B.).— On the bifurcation loci of rational maps of degree two, Ph.D. thesis, Cornell University (1988). | MR

[45] Yampolsky (M.) & Zakeri (S.).— Mating Siegel quadratic polynomials, Journ. of the A.M.S., vol 14-1, p. 25-78 (2000). | Zbl | MR

[46] Zhang (G.).— All David type Siegel disks of polynomial maps are Jordan domains, manuscript (2009).

Cité par Sources :