A holomorphic correspondence at the boundary of the Klein combination locus
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial à l’occasion du “Workshop on polynomial matings” 8-11 juin 2011, Toulouse, Tome 21 (2012) no. S5, pp. 1119-1137.

Voir la notice de l'article provenant de la source Numdam

We investigate an explicit holomorphic correspondence on the Riemann sphere with striking dynamical behaviour: the limit set is a fractal resembling the one-skeleton of a tetrahedron and on each component of the complement of this set the correspondence behaves like a Fuchsian group.

Nous étudions une correspondance holomorphe explicite sur la sphère de Riemann ayant une dynamique remarquable : l’ensemble limite est un fractal qui ressemble au 1-squelette du tétrahèdre et sur chaque composante du complémentaire de cet ensemble, la correspondance est donnée par un groupe Fuchsien.

DOI : 10.5802/afst.1363

Bullett, Shaun 1 ; Curtis, Andrew 1

1 School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
@article{AFST_2012_6_21_S5_1119_0,
     author = {Bullett, Shaun and Curtis, Andrew},
     title = {A holomorphic correspondence at the boundary of the {Klein} combination locus},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1119--1137},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     doi = {10.5802/afst.1363},
     zbl = {06167102},
     mrnumber = {3088268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/afst.1363/}
}
TY  - JOUR
AU  - Bullett, Shaun
AU  - Curtis, Andrew
TI  - A holomorphic correspondence at the boundary of the Klein combination locus
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
SP  - 1119
EP  - 1137
VL  - 21
IS  - S5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - http://geodesic.mathdoc.fr/articles/10.5802/afst.1363/
DO  - 10.5802/afst.1363
LA  - en
ID  - AFST_2012_6_21_S5_1119_0
ER  - 
%0 Journal Article
%A Bullett, Shaun
%A Curtis, Andrew
%T A holomorphic correspondence at the boundary of the Klein combination locus
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2012
%P 1119-1137
%V 21
%N S5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U http://geodesic.mathdoc.fr/articles/10.5802/afst.1363/
%R 10.5802/afst.1363
%G en
%F AFST_2012_6_21_S5_1119_0
Bullett, Shaun; Curtis, Andrew. A holomorphic correspondence at the boundary of the Klein combination locus. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial à l’occasion du “Workshop on polynomial matings” 8-11 juin 2011, Toulouse, Tome 21 (2012) no. S5, pp. 1119-1137. doi : 10.5802/afst.1363. http://geodesic.mathdoc.fr/articles/10.5802/afst.1363/

[1] Bullett (S.).— A combination theorem for covering correspondences and an application to mating polynomial maps with Kleinian groups, Conformal Geometry and Dynamics 4 (2000) 75-96. | Zbl | MR

[2] Bullett (S.) and Haïssinsky (P.).— Pinching holomorphic correspondences, Conformal Geometry and Dynamics 11, p. 65-89 (2007). | Zbl | MR

[3] Bullett (S.) and Harvey (W.).— Mating quadratic maps with Kleinian groups via quasiconformal surgery, Electronic Research Announcements of the AMS 6, p. 21-30 (2000). | Zbl | MR

[4] Bullett (S.) and Penrose (C.).— Mating quadratic maps with the modular group, Inventiones Math. 115, p. 483-511 (1994). | Zbl | MR

[5] Curtis (A.).— PhD Thesis, QMUL (2013).

[6] Milnor (J.).— Dynamics in One Complex Variable, Annals of Mathematics Studies No. 160, Princeton University Press (2006). | Zbl | MR

Cité par Sources :