Curvature measures, normal cycles and asymptotic cones
Actes des rencontres du CIRM, Courbure discrète : théorie et applications, Tome 3 (2013) no. 1, pp. 3-10.

Voir la notice de l'acte provenant de la source Numdam

The purpose of this article is to give an overview of the theory of the normal cycle and to show how to use it to define a curvature measures on singular surfaces embedded in an (oriented) Euclidean space 𝔼 3 . In particular, we will introduce the notion of asymptotic cone associated to a Borel subset of 𝔼 3 , generalizing the asymptotic directions defined at each point of a smooth surface. For simplicity, we restrict our singular subsets to polyhedra of the 3-dimensional Euclidean space 𝔼 3 . The coherence of the theory lies in a convergence theorem: If a sequence of polyhedra (P n ) tends (for a suitable topology) to a smooth surface S, then the sequence of curvature measures of (P n ) tends to the curvature measures of S. Details on the first part of these pages can be found in [6].

Publié le :
DOI : 10.5802/acirm.50
Classification : 00X99
Keywords: curvature measure, shape operator, surfaces, normal cycle, asymptotic cones

Sun, Xiang 1 ; Morvan, Jean-Marie 2

1 Visual Computing Center King Abdullah University of Science and Technology Saudi Arabia
2 University Claude Bernard Lyon P1, France, C.N.R.S. U.M.R. 5028 Visual Computing Center King Abdullah University of Science and Technology Saudi Arabia
@article{ACIRM_2013__3_1_3_0,
     author = {Sun, Xiang and Morvan, Jean-Marie},
     title = {Curvature measures, normal cycles and asymptotic cones},
     journal = {Actes des rencontres du CIRM},
     pages = {3--10},
     publisher = {CIRM},
     volume = {3},
     number = {1},
     year = {2013},
     doi = {10.5802/acirm.50},
     zbl = {06938598},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/}
}
TY  - JOUR
AU  - Sun, Xiang
AU  - Morvan, Jean-Marie
TI  - Curvature measures, normal cycles and asymptotic cones
JO  - Actes des rencontres du CIRM
PY  - 2013
SP  - 3
EP  - 10
VL  - 3
IS  - 1
PB  - CIRM
UR  - http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/
DO  - 10.5802/acirm.50
LA  - en
ID  - ACIRM_2013__3_1_3_0
ER  - 
%0 Journal Article
%A Sun, Xiang
%A Morvan, Jean-Marie
%T Curvature measures, normal cycles and asymptotic cones
%J Actes des rencontres du CIRM
%D 2013
%P 3-10
%V 3
%N 1
%I CIRM
%U http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/
%R 10.5802/acirm.50
%G en
%F ACIRM_2013__3_1_3_0
Sun, Xiang; Morvan, Jean-Marie. Curvature measures, normal cycles and asymptotic cones. Actes des rencontres du CIRM, Courbure discrète : théorie et applications, Tome 3 (2013) no. 1, pp. 3-10. doi : 10.5802/acirm.50. http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/

[1] Cohen-Steiner, David; Morvan, Jean-Marie Restricted delaunay triangulations and normal cycle, Proceedings of the nineteenth annual symposium on Computational geometry, ACM (2003), pp. 312-321 | DOI | Zbl

[2] Cohen-Steiner, David; Morvan, Jean-Marie 4 Differential Geometry on Discrete Surfaces, Effective computational geometry for curves and surfaces, Springer (2006) | DOI | Zbl

[3] Cohen-Steiner, David; Morvan, Jean-Marie Second fundamental measure of geometric sets and local approximation of curvatures, Journal of Differential Geometry, Volume 74 (2006) no. 3, pp. 363-394 | Zbl | MR

[4] Fu, Joseph HG Monge-Ampère Functions 1, Indiana Univ. Math. J., Volume 38 (1989), pp. 745-771

[5] Fu, Joseph HG Convergence of curvatures in secant approximations, Journal of Differential Geometry, Volume 37 (1993) no. 1, pp. 177-190 | Zbl | MR

[6] Morvan, Jean-Marie Generalized curvatures, 2, Springer, 2008 | Zbl | MR

[7] Wintgen, Peter Normal cycle and integral curvature for polyhedra in Riemannian manifolds, Differential Geometry. North-Holland Publishing Co., Amsterdam-New York (1982) | Zbl

[8] Zähle, Martina Integral and current representation of Federer’s curvature measures, Archiv der Mathematik, Volume 46 (1986) no. 6, pp. 557-567 | DOI | Zbl | MR

Cité par Sources :