Voir la notice de l'acte provenant de la source Numdam
The purpose of this article is to give an overview of the theory of the normal cycle and to show how to use it to define a curvature measures on singular surfaces embedded in an (oriented) Euclidean space . In particular, we will introduce the notion of asymptotic cone associated to a Borel subset of , generalizing the asymptotic directions defined at each point of a smooth surface. For simplicity, we restrict our singular subsets to polyhedra of the -dimensional Euclidean space . The coherence of the theory lies in a convergence theorem: If a sequence of polyhedra tends (for a suitable topology) to a smooth surface , then the sequence of curvature measures of tends to the curvature measures of . Details on the first part of these pages can be found in [6].
Sun, Xiang 1 ; Morvan, Jean-Marie 2
@article{ACIRM_2013__3_1_3_0, author = {Sun, Xiang and Morvan, Jean-Marie}, title = {Curvature measures, normal cycles and asymptotic cones}, journal = {Actes des rencontres du CIRM}, pages = {3--10}, publisher = {CIRM}, volume = {3}, number = {1}, year = {2013}, doi = {10.5802/acirm.50}, zbl = {06938598}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/} }
TY - JOUR AU - Sun, Xiang AU - Morvan, Jean-Marie TI - Curvature measures, normal cycles and asymptotic cones JO - Actes des rencontres du CIRM PY - 2013 SP - 3 EP - 10 VL - 3 IS - 1 PB - CIRM UR - http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/ DO - 10.5802/acirm.50 LA - en ID - ACIRM_2013__3_1_3_0 ER -
Sun, Xiang; Morvan, Jean-Marie. Curvature measures, normal cycles and asymptotic cones. Actes des rencontres du CIRM, Courbure discrète : théorie et applications, Tome 3 (2013) no. 1, pp. 3-10. doi : 10.5802/acirm.50. http://geodesic.mathdoc.fr/articles/10.5802/acirm.50/
[1] Restricted delaunay triangulations and normal cycle, Proceedings of the nineteenth annual symposium on Computational geometry, ACM (2003), pp. 312-321 | DOI | Zbl
[2] 4 Differential Geometry on Discrete Surfaces, Effective computational geometry for curves and surfaces, Springer (2006) | DOI | Zbl
[3] Second fundamental measure of geometric sets and local approximation of curvatures, Journal of Differential Geometry, Volume 74 (2006) no. 3, pp. 363-394 | Zbl | MR
[4] Monge-Ampère Functions 1, Indiana Univ. Math. J., Volume 38 (1989), pp. 745-771
[5] Convergence of curvatures in secant approximations, Journal of Differential Geometry, Volume 37 (1993) no. 1, pp. 177-190 | Zbl | MR
[6] Generalized curvatures, 2, Springer, 2008 | Zbl | MR
[7] Normal cycle and integral curvature for polyhedra in Riemannian manifolds, Differential Geometry. North-Holland Publishing Co., Amsterdam-New York (1982) | Zbl
[8] Integral and current representation of Federer’s curvature measures, Archiv der Mathematik, Volume 46 (1986) no. 6, pp. 557-567 | DOI | Zbl | MR
Cité par Sources :