A number field , with ring of integers , is said to be a Pólya field if the -algebra formed by the integer-valued polynomials on admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of in a Pólya field. We give a positive answer to this embedding problem by showing that the Hilbert class field of is a Pólya field. Finally, we give upper bounds for the minimal degree of a Pólya field containing , namely the Pólya number of .
DOI : 10.5802/acirm.29
Keywords: Pólya fields, Hilbert class field, genus field, integer-valued polynomials
Leriche, Amandine 1
@article{ACIRM_2010__2_2_21_0,
author = {Leriche, Amandine},
title = {P\'olya fields and {P\'olya} numbers},
journal = {Actes des rencontres du CIRM},
pages = {21--26},
year = {2010},
publisher = {CIRM},
volume = {2},
number = {2},
doi = {10.5802/acirm.29},
zbl = {06938577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/acirm.29/}
}
Leriche, Amandine. Pólya fields and Pólya numbers. Actes des rencontres du CIRM, Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières, Tome 2 (2010) no. 2, pp. 21-26. doi: 10.5802/acirm.29
Cité par Sources :