Pólya fields and Pólya numbers
Actes des rencontres du CIRM, Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières, Tome 2 (2010) no. 2, pp. 21-26 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'acte

A number field K, with ring of integers 𝒪 K , is said to be a Pólya field if the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field K is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of K in a Pólya field. We give a positive answer to this embedding problem by showing that the Hilbert class field H K of K is a Pólya field. Finally, we give upper bounds for the minimal degree po K of a Pólya field containing K, namely the Pólya number of K.

Publié le :
DOI : 10.5802/acirm.29
Classification : 11R04, 13F20, 11R16, 11R37
Keywords: Pólya fields, Hilbert class field, genus field, integer-valued polynomials

Leriche, Amandine 1

1 LAMFA, CNRS UMR 6140 Université de Picardie Jules Verne 33, rue Saint-Leu 80039 Amiens & École Centrale de Lille Cité Scientifique 59650 Villeneuve d’Ascq France
@article{ACIRM_2010__2_2_21_0,
     author = {Leriche, Amandine},
     title = {P\'olya fields and {P\'olya} numbers},
     journal = {Actes des rencontres du CIRM},
     pages = {21--26},
     year = {2010},
     publisher = {CIRM},
     volume = {2},
     number = {2},
     doi = {10.5802/acirm.29},
     zbl = {06938577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/acirm.29/}
}
TY  - JOUR
AU  - Leriche, Amandine
TI  - Pólya fields and Pólya numbers
JO  - Actes des rencontres du CIRM
PY  - 2010
SP  - 21
EP  - 26
VL  - 2
IS  - 2
PB  - CIRM
UR  - http://geodesic.mathdoc.fr/articles/10.5802/acirm.29/
DO  - 10.5802/acirm.29
LA  - en
ID  - ACIRM_2010__2_2_21_0
ER  - 
%0 Journal Article
%A Leriche, Amandine
%T Pólya fields and Pólya numbers
%J Actes des rencontres du CIRM
%D 2010
%P 21-26
%V 2
%N 2
%I CIRM
%U http://geodesic.mathdoc.fr/articles/10.5802/acirm.29/
%R 10.5802/acirm.29
%G en
%F ACIRM_2010__2_2_21_0
Leriche, Amandine. Pólya fields and Pólya numbers. Actes des rencontres du CIRM, Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières, Tome 2 (2010) no. 2, pp. 21-26. doi: 10.5802/acirm.29

Cité par Sources :