The dimension of projections of planar diagonal self-affine measures
Annales Fennici Mathematici, Tome 50 (2025) no. 1, p. 59–78.

Voir la notice de l'article provenant de la source Journal.fi

We show that if $\mu$ is a self-affine measure on the plane defined by an iterated function system of contractions with diagonal linear parts, then under an irrationality assumption on the entries of the linear parts, $\operatorname{dim}_{\rm H} \mu \circ \pi^{-1} = \min \{ 1, \operatorname{dim}_{\rm H} \mu \}$ for any non-principal orthogonal projection $\pi$.
DOI : 10.54330/afm.156815
Keywords: Hausdorff dimension, orthogonal projections, self-affine measures

Aleksi Pyörälä 1

1 University of Jyväskylä, Department of Mathematics and Statistics
@article{AFM_2025_50_1_a3,
     author = {Aleksi Py\"or\"al\"a},
     title = {The dimension of projections of planar diagonal self-affine measures},
     journal = {Annales Fennici Mathematici},
     pages = {59{\textendash}78--59{\textendash}78},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2025},
     doi = {10.54330/afm.156815},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.156815/}
}
TY  - JOUR
AU  - Aleksi Pyörälä
TI  - The dimension of projections of planar diagonal self-affine measures
JO  - Annales Fennici Mathematici
PY  - 2025
SP  - 59–78
EP  - 59–78
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.156815/
DO  - 10.54330/afm.156815
LA  - en
ID  - AFM_2025_50_1_a3
ER  - 
%0 Journal Article
%A Aleksi Pyörälä
%T The dimension of projections of planar diagonal self-affine measures
%J Annales Fennici Mathematici
%D 2025
%P 59–78-59–78
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.156815/
%R 10.54330/afm.156815
%G en
%F AFM_2025_50_1_a3
Aleksi Pyörälä. The dimension of projections of planar diagonal self-affine measures. Annales Fennici Mathematici, Tome 50 (2025) no. 1, p. 59–78. doi : 10.54330/afm.156815. http://geodesic.mathdoc.fr/articles/10.54330/afm.156815/

Cité par Sources :