Tent spaces and solutions of Weinstein type equations with CMO(R_+,dm_λ) boundary values
Annales Fennici Mathematici, Tome 50 (2025) no. 1, p. 29–48.

Voir la notice de l'article provenant de la source Journal.fi

  Let $\{P_{t}^{[\lambda]}\}_{t>0}$ be the Poisson semigroup associated with the Bessel operator $\Delta_{\lambda}$ on $\mathbb{R}_+:=(0,\infty)$, where $\lambda>0$ and   $\Delta_{\lambda}:=-x^{-2\lambda}\frac{d}{dx}x^{2\lambda}\frac{d}{dx}$.   In this paper, the authors show that a function $u(y,t)$ on $\mathbb{R}_{+}\times\mathbb{R}_{+}$, has the form $u(y,t)=P_{t}^{[\lambda]}f(y)$ with $f\in$ CMO$(\mathbb{R}_{+},dm_{\lambda})$, where $dm_{\lambda}(x):=x^{2\lambda}\,dx$, if and only if $u$ satisfies the Weinstein type equation   $\mathbb{L}_{\lambda}u(x,t):=\frac{\partial^{2}u(x,t)}{\partial t^{2}}-\Delta_{\lambda}u(x,t)=0$, $(x,t)\in{\mathbb{R}_{+}\times\mathbb{R}_{+}}$,   a Carleson type condition and certain limiting conditions. For this purpose, the authors first introduce the tent spaces $T_{2}^{p}$ with $p\in[1,\infty]$ and $T_{2,C}^{\infty}$ in the Bessel setting and then show that CMO$(\mathbb{R}_{+},dm_{\lambda})$ has a connection with $T_{2,C}^{\infty}$ via $\{P_{t}^{[\lambda]}\}_{t>0}$. In addition, the authors obtain some boundedness results on the operator $\pi_{\lambda}$ from tent spaces to some "ordinary" function spaces.  
DOI : 10.54330/afm.155908
Keywords: Bessel operator, CMO(R_, dm_λ), Weinstein type equation, tent space, boundedness

Jorge J. Betancor 1 ; Qingdong Guo 2 ; Dongyong Yang 2

1 Universidad de La Laguna, Departamento de Análisis Matemático
2 Xiamen University, School of Mathematical Sciences
@article{AFM_2025_50_1_a1,
     author = {Jorge J. Betancor and Qingdong Guo and Dongyong Yang},
     title = {Tent spaces and solutions of {Weinstein} type equations with {CMO(R_+,dm_\ensuremath{\lambda})} boundary values},
     journal = {Annales Fennici Mathematici},
     pages = {29{\textendash}48--29{\textendash}48},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2025},
     doi = {10.54330/afm.155908},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.155908/}
}
TY  - JOUR
AU  - Jorge J. Betancor
AU  - Qingdong Guo
AU  - Dongyong Yang
TI  - Tent spaces and solutions of Weinstein type equations with CMO(R_+,dm_λ) boundary values
JO  - Annales Fennici Mathematici
PY  - 2025
SP  - 29–48
EP  - 29–48
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.155908/
DO  - 10.54330/afm.155908
LA  - en
ID  - AFM_2025_50_1_a1
ER  - 
%0 Journal Article
%A Jorge J. Betancor
%A Qingdong Guo
%A Dongyong Yang
%T Tent spaces and solutions of Weinstein type equations with CMO(R_+,dm_λ) boundary values
%J Annales Fennici Mathematici
%D 2025
%P 29–48-29–48
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.155908/
%R 10.54330/afm.155908
%G en
%F AFM_2025_50_1_a1
Jorge J. Betancor; Qingdong Guo; Dongyong Yang. Tent spaces and solutions of Weinstein type equations with CMO(R_+,dm_λ) boundary values. Annales Fennici Mathematici, Tome 50 (2025) no. 1, p. 29–48. doi : 10.54330/afm.155908. http://geodesic.mathdoc.fr/articles/10.54330/afm.155908/

Cité par Sources :