Quantitative Sobolev regularity of quasiregular maps
Annales Fennici Mathematici, Tome 50 (2025) no. 1, p. 3–28.

Voir la notice de l'article provenant de la source Journal.fi

We quantify the Sobolev space norm of the Beltrami resolvent $(I- \mu S)^{-1}$, where $S$ is the Beurling–Ahlfors transform, in terms of the corresponding Sobolev space norm of the dilatation $\mu$ in the critical and supercritical ranges. Our estimate entails as a consequence quantitative self-improvement inequalities of Caccioppoli type for quasiregular distributions with dilatations in $W^{1,p}$, $p \ge 2$. Our proof strategy is then adapted to yield quantitative estimates for the resolvent $(I-\mu S_\Omega)^{-1}$ of the Beltrami equation on a sufficiently regular domain $\Omega$, with $\mu\in W^{1,p}(\Omega)$. Here, $S_\Omega$ is the compression of $S$ to a domain $\Omega$. Our proofs do not rely on the compactness or commutator arguments previously employed in related literature. Instead, they leverage the weighted Sobolev estimates for compressions of Calderón–Zygmund operators to domains, recently obtained by the authors, to extend the Astala–Iwaniec–Saksman technique to higher regularities.
DOI : 10.54330/afm.155498
Keywords: Beltrami equation, quasiregular, quasiconformal, Sobolev regularity, compression of singular integrals, T1-theorems, weighted bounds, Beurling–Ahlfors transform

Francesco Di Plinio 1 ; A. Walton Green 2 ; Brett D. Wick 2

1 Università di Napoli, Dipartimento di Matematica e Applicazioni
2 Washington University in Saint Louis, Department of Mathematics
@article{AFM_2025_50_1_a0,
     author = {Francesco Di Plinio and A. Walton Green and Brett D. Wick},
     title = {Quantitative {Sobolev} regularity of quasiregular maps},
     journal = {Annales Fennici Mathematici},
     pages = {3{\textendash}28--3{\textendash}28},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2025},
     doi = {10.54330/afm.155498},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.54330/afm.155498/}
}
TY  - JOUR
AU  - Francesco Di Plinio
AU  - A. Walton Green
AU  - Brett D. Wick
TI  - Quantitative Sobolev regularity of quasiregular maps
JO  - Annales Fennici Mathematici
PY  - 2025
SP  - 3–28
EP  - 3–28
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.54330/afm.155498/
DO  - 10.54330/afm.155498
LA  - en
ID  - AFM_2025_50_1_a0
ER  - 
%0 Journal Article
%A Francesco Di Plinio
%A A. Walton Green
%A Brett D. Wick
%T Quantitative Sobolev regularity of quasiregular maps
%J Annales Fennici Mathematici
%D 2025
%P 3–28-3–28
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.54330/afm.155498/
%R 10.54330/afm.155498
%G en
%F AFM_2025_50_1_a0
Francesco Di Plinio; A. Walton Green; Brett D. Wick. Quantitative Sobolev regularity of quasiregular maps. Annales Fennici Mathematici, Tome 50 (2025) no. 1, p. 3–28. doi : 10.54330/afm.155498. http://geodesic.mathdoc.fr/articles/10.54330/afm.155498/

Cité par Sources :